IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1609-d1591947.html
   My bibliography  Save this article

A Novel Optimization Approach Using Chaos Game Optimization Algorithm for Parameters Estimation of Photovoltaic Cells

Author

Listed:
  • Galal Borham Wereda

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Ibrahim Mohamed Diaaeldin

    (Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Othman A. M. Omar

    (Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Mahmoud A. Attia

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Ahmed O. Badr

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

The utilization of solar photovoltaics (PV) in electricity generation is progressively increasing due to its environmental benefits, such as reducing power transmission costs and mitigating global warming. This research aims to enhance the effectiveness of the extracted PV parameters. To estimate the parameters of the PV model, a recent optimization algorithm called the Chaos Game Optimization algorithm (CGO) is employed to precisely choose PV parameters. In this work, PV cells are modeled using two different models, including the single-diode model (SDM) and the double-diode model (DDM). The CGO algorithm outperformed nine well-known optimization algorithms based on the root–mean squares of error (RMSE) with a percentage of up to 97% for the single-diode model (SDM) and up to 92.92% for the double-diode model (DDM).

Suggested Citation

  • Galal Borham Wereda & Ibrahim Mohamed Diaaeldin & Othman A. M. Omar & Mahmoud A. Attia & Ahmed O. Badr, 2025. "A Novel Optimization Approach Using Chaos Game Optimization Algorithm for Parameters Estimation of Photovoltaic Cells," Sustainability, MDPI, vol. 17(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1609-:d:1591947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    2. Aissa Meflah & Fathia Chekired & Nadia Drir & Laurent Canale, 2024. "Accurate Method for Solar Power Generation Estimation for Different PV (Photovoltaic Panels) Technologies," Resources, MDPI, vol. 13(12), pages 1-18, November.
    3. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    4. Ailing Wang & Qiongfang Lin & Chunlu Liu & Liu Yang & Shaonan Sun, 2024. "Sustainable Energy Development: Reviewing Carbon Emission Reduction in Photovoltaic Power Systems," Sustainability, MDPI, vol. 16(23), pages 1-22, November.
    5. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    6. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    7. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    8. Jianping Zhao & Damin Zhang & Qing He & Lun Li, 2023. "A Hybrid-Strategy-Improved Dragonfly Algorithm for the Parameter Identification of an SDM," Sustainability, MDPI, vol. 15(15), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedroza-Díaz, Alfredo & Rodrigo, Pedro M. & Dávalos-Orozco, Óscar & De-la-Vega, Eduardo & Valera-Albacete, Álvaro, 2025. "Review of explicit models for photovoltaic cell electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    2. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    4. Sofia Boulmrharj & Mohammed Khaidar & Mohamed Bakhouya & Radouane Ouladsine & Mostapha Siniti & Khalid Zine-dine, 2020. "Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    5. Ebrahimi, S. Mohammadreza & Salahshour, Esmaeil & Malekzadeh, Milad & Francisco Gordillo,, 2019. "Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm," Energy, Elsevier, vol. 179(C), pages 358-372.
    6. Habib Satria & Rahmad B. Y. Syah & Moncef L. Nehdi & Monjee K. Almustafa & Abdelrahman Omer Idris Adam, 2023. "Parameters Identification of Solar PV Using Hybrid Chaotic Northern Goshawk and Pattern Search," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    7. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    8. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    9. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    10. Tihomir Betti & Ante Kristić & Ivan Marasović & Vesna Pekić, 2024. "Accuracy of Simscape Solar Cell Block for Modeling a Partially Shaded Photovoltaic Module," Energies, MDPI, vol. 17(10), pages 1-19, May.
    11. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    12. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    13. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    14. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    15. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    16. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    17. Manish Kumar Singla & Jyoti Gupta & Parag Nijhawan & Parminder Singh & Nimay Chandra Giri & Essam Hendawi & Mohamed I. Abu El-Sebah, 2023. "Parameter Estimation Techniques for Photovoltaic System Modeling," Energies, MDPI, vol. 16(17), pages 1-16, August.
    18. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    19. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    20. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1609-:d:1591947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.