IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v64y2016icp672-681.html
   My bibliography  Save this article

Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator

Author

Listed:
  • Vieira, R.G.
  • Guerra, F.K.O.M.V.
  • Vale, M.R.B.G.
  • Araújo, M.M.

Abstract

Photovoltaic solar energy has been explored as an energy solution to the decline of energy production, as well as environmental concerns. However, generate electricity through the sun still considered uncompetitive freight to other sources, cause it presents low efficiency and high production cost. In attempt to make it more attractive from a financial point view, solar trackers has been used to increase the photovoltaic systems efficiency. Considering its facts, this paper aims to perform a comparative study between a static photovoltaic solar panel and a one-axis mobility panel, installed in the city of Mossoró/RN. The city in study is located in the Brazilian semiarid, under high solar radiation levels, in a dry climate and hot region, reaching high temperatures during the day. After assembly the proposed systems, were performed operating analysis and performance comparative study between the static and mobile systems, which allowed to conclude that the panel using the sun tracking showed a low average gain in power generated relative to the fixed panel to the region where the systems installed.

Suggested Citation

  • Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.
  • Handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:672-681
    DOI: 10.1016/j.rser.2016.06.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Mohamad, Ali, 2004. "Efficiency improvements of photo-voltaic panels using a Sun-tracking system," Applied Energy, Elsevier, vol. 79(3), pages 345-354, November.
    2. Ibrahim, Said M.A., 1996. "The forced circulation performance of a sun tracking parabolic concentrator collector," Renewable Energy, Elsevier, vol. 9(1), pages 568-571.
    3. Tomson, Teolan, 2008. "Discrete two-positional tracking of solar collectors," Renewable Energy, Elsevier, vol. 33(3), pages 400-405.
    4. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos A. Ponce-Jara & Ivan Pazmino & Ángelo Moreira-Espinoza & Alfonso Gunsha-Morales & Catalina Rus-Casas, 2024. "Assessment of Single-Axis Solar Tracking System Efficiency in Equatorial Regions: A Case Study of Manta, Ecuador," Energies, MDPI, vol. 17(16), pages 1-19, August.
    2. Julie Viloria-Porto & Carlos Robles-Algarín & Diego Restrepo-Leal, 2018. "A Novel Approach for an MPPT Controller Based on the ADALINE Network Trained with the RTRL Algorithm," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Tuğçe Demirdelen & Hakan Alıcı & Burak Esenboğa & Manolya Güldürek, 2023. "Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate," Energies, MDPI, vol. 16(10), pages 1-23, May.
    4. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    5. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    6. Marcos A. Ponce-Jara & Carlos Velásquez-Figueroa & María Reyes-Mero & Catalina Rus-Casas, 2022. "Performance Comparison between Fixed and Dual-Axis Sun-Tracking Photovoltaic Panels with an IoT Monitoring System in the Coastal Region of Ecuador," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    7. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.
    8. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2021. "Solar Tracking System with New Hybrid Control in Energy Production Optimization from Photovoltaic Conversion for Polish Climatic Conditions," Energies, MDPI, vol. 14(10), pages 1-26, May.
    9. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    10. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    11. Karol Jakub Listewnik & Tomasz Nowak, 2024. "Comparison of the Energy Efficiency of Fixed and Tracking Home Photovoltaic Systems in Northern Poland," Energies, MDPI, vol. 17(17), pages 1-22, September.
    12. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    13. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    14. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    15. Huilin Shang & Wei Shen, 2023. "Design and Implementation of a Dual-Axis Solar Tracking System," Energies, MDPI, vol. 16(17), pages 1-13, August.
    16. Karen Barbosa de Melo & Hugo Soeiro Moreira & Marcelo Gradella Villalva, 2020. "Influence of Solar Position Calculation Methods Applied to Horizontal Single-Axis Solar Trackers on Energy Generation," Energies, MDPI, vol. 13(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Salsabila & Shafie, Suhaidi & Ab Kadir, Mohd Zainal Abidin & Ahmad, Noor Syafawati, 2013. "On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 635-642.
    2. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    3. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    4. Fabio Ricco Galluzzo & Pier Enrico Zani & Marina Foti & Andrea Canino & Cosimo Gerardi & Salvatore Lombardo, 2020. "Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers," Energies, MDPI, vol. 13(4), pages 1-18, February.
    5. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    6. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    7. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    8. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    9. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    10. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    11. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    12. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    13. Sidek, M.H.M. & Azis, N. & Hasan, W.Z.W. & Ab Kadir, M.Z.A. & Shafie, S. & Radzi, M.A.M., 2017. "Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control," Energy, Elsevier, vol. 124(C), pages 160-170.
    14. Hoffmann, Fábio Moacir & Molz, Rolf Fredi & Kothe, João Victor & Nara, Elpidio Oscar Benitez & Tedesco, Leonel Pablo Carvalho, 2018. "Monthly profile analysis based on a two-axis solar tracker proposal for photovoltaic panels," Renewable Energy, Elsevier, vol. 115(C), pages 750-759.
    15. Abdelghani-Idrissi, M.A. & Khalfallaoui, S. & Seguin, D. & Vernières-Hassimi, L. & Leveneur, S., 2018. "Solar tracker for enhancement of the thermal efficiency of solar water heating system," Renewable Energy, Elsevier, vol. 119(C), pages 79-94.
    16. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    17. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    18. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    19. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    20. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:672-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.