IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8629-d976045.html
   My bibliography  Save this article

Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning

Author

Listed:
  • Bing Liu

    (School of Nuclear Science and Technology, University of South China, Hengyang 421000, China)

  • Jichong Lei

    (School of Nuclear Science and Technology, University of South China, Hengyang 421000, China)

  • Jinsen Xie

    (School of Nuclear Science and Technology, University of South China, Hengyang 421000, China)

  • Jianliang Zhou

    (School of Nuclear Science and Technology, University of South China, Hengyang 421000, China)

Abstract

As artificial intelligence technology has progressed, numerous businesses have used intelligent diagnostic technology. This study developed a deep LSTM neural network for a nuclear power plant to defect diagnostics. PCTRAN is used to accomplish data extraction for distinct faults and varied fault degrees of the PCTRAN code, and some essential nuclear parameters are chosen as feature quantities. The training, validation, and test sets are collected using random sampling at a ratio of 7:1:2, and the proper hyperparameters are selected to construct the deep LSTM neural network. The test findings indicate that the fault identification rate of the nuclear power plant fault diagnostic model based on a deep LSTM neural network is more than 99 percent, first validating the applicability of a deep LSTM neural network for a nuclear power plant fault-diagnosis model.

Suggested Citation

  • Bing Liu & Jichong Lei & Jinsen Xie & Jianliang Zhou, 2022. "Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning," Energies, MDPI, vol. 15(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8629-:d:976045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Zirui Wang & Ziqi Zhang & Xu Zhang & Mingxuan Du & Huiting Zhang & Bowen Liu, 2022. "Power System Fault Diagnosis Method Based on Deep Reinforcement Learning," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Jiyang Wu & Qiang Li & Qian Chen & Guangqiang Peng & Jinyu Wang & Qiang Fu & Bo Yang, 2022. "Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    4. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach," Energies, MDPI, vol. 15(20), pages 1-20, October.
    5. Shrinathan Esakimuthu Pandarakone & Yukio Mizuno & Hisahide Nakamura, 2019. "A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors," Energies, MDPI, vol. 12(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haixia Gu & Gaojun Liu & Jixue Li & Hongyun Xie & Hanguan Wen, 2023. "A Framework Based on Deep Learning for Predicting Multiple Safety-Critical Parameter Trends in Nuclear Power Plants," Sustainability, MDPI, vol. 15(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    2. Cristina Morel & Ahmad Akrad, 2023. "Open-Circuit Fault Detection and Location in AC - DC - AC Converters Based on Entropy Analysis," Energies, MDPI, vol. 16(4), pages 1-20, February.
    3. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    4. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    5. David Pérez Granados & Mauricio Alberto Ortega Ruiz & Joel Moreira Acosta & Sergio Arturo Gama Lara & Roberto Adrián González Domínguez & Pedro Jacinto Páramo Kañetas, 2023. "A Wind Turbine Vibration Monitoring System for Predictive Maintenance Based on Machine Learning Methods Developed under Safely Controlled Laboratory Conditions," Energies, MDPI, vol. 16(5), pages 1-17, February.
    6. Bo Yang & Yulin Li & Wei Yao & Lin Jiang & Chuanke Zhang & Chao Duan & Yaxing Ren, 2023. "Optimization and Control of New Power Systems under the Dual Carbon Goals: Key Issues, Advanced Techniques, and Perspectives," Energies, MDPI, vol. 16(9), pages 1-4, May.
    7. Ali S. Allahloh & Mohammad Sarfraz & Atef M. Ghaleb & Abdullrahman A. Al-Shamma’a & Hassan M. Hussein Farh & Abdullah M. Al-Shaalan, 2023. "Revolutionizing IC Genset Operations with IIoT and AI: A Study on Fuel Savings and Predictive Maintenance," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    8. Qiang Li & Qian Chen & Jiyang Wu & Youqiang Qiu & Changhong Zhang & Yilong Huang & Jianbao Guo & Bo Yang, 2023. "XGBoost-Based Intelligent Decision Making of HVDC System with Knowledge Graph," Energies, MDPI, vol. 16(5), pages 1-21, March.
    9. Anne Carolina Rodrigues Klaar & Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico," Energies, MDPI, vol. 16(7), pages 1-17, March.
    10. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8629-:d:976045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.