Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Zirui Wang & Ziqi Zhang & Xu Zhang & Mingxuan Du & Huiting Zhang & Bowen Liu, 2022. "Power System Fault Diagnosis Method Based on Deep Reinforcement Learning," Energies, MDPI, vol. 15(20), pages 1-15, October.
- Shrinathan Esakimuthu Pandarakone & Yukio Mizuno & Hisahide Nakamura, 2019. "A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors," Energies, MDPI, vol. 12(11), pages 1-14, June.
- Jiyang Wu & Qiang Li & Qian Chen & Guangqiang Peng & Jinyu Wang & Qiang Fu & Bo Yang, 2022. "Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
- Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach," Energies, MDPI, vol. 15(20), pages 1-20, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haixia Gu & Gaojun Liu & Jixue Li & Hongyun Xie & Hanguan Wen, 2023. "A Framework Based on Deep Learning for Predicting Multiple Safety-Critical Parameter Trends in Nuclear Power Plants," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
- Cristina Morel & Ahmad Akrad, 2023. "Open-Circuit Fault Detection and Location in AC - DC - AC Converters Based on Entropy Analysis," Energies, MDPI, vol. 16(4), pages 1-20, February.
- Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
- Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
- David Pérez Granados & Mauricio Alberto Ortega Ruiz & Joel Moreira Acosta & Sergio Arturo Gama Lara & Roberto Adrián González Domínguez & Pedro Jacinto Páramo Kañetas, 2023. "A Wind Turbine Vibration Monitoring System for Predictive Maintenance Based on Machine Learning Methods Developed under Safely Controlled Laboratory Conditions," Energies, MDPI, vol. 16(5), pages 1-17, February.
- Bo Yang & Yulin Li & Wei Yao & Lin Jiang & Chuanke Zhang & Chao Duan & Yaxing Ren, 2023. "Optimization and Control of New Power Systems under the Dual Carbon Goals: Key Issues, Advanced Techniques, and Perspectives," Energies, MDPI, vol. 16(9), pages 1-4, May.
- Ali S. Allahloh & Mohammad Sarfraz & Atef M. Ghaleb & Abdullrahman A. Al-Shamma’a & Hassan M. Hussein Farh & Abdullah M. Al-Shaalan, 2023. "Revolutionizing IC Genset Operations with IIoT and AI: A Study on Fuel Savings and Predictive Maintenance," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
- Qiang Li & Qian Chen & Jiyang Wu & Youqiang Qiu & Changhong Zhang & Yilong Huang & Jianbao Guo & Bo Yang, 2023. "XGBoost-Based Intelligent Decision Making of HVDC System with Knowledge Graph," Energies, MDPI, vol. 16(5), pages 1-21, March.
- Anne Carolina Rodrigues Klaar & Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico," Energies, MDPI, vol. 16(7), pages 1-17, March.
- Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
More about this item
Keywords
nuclear power plant; PCTRAN; deep learning; fault diagnosis; deep LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8629-:d:976045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.