IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2733-d249142.html
   My bibliography  Save this article

Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines

Author

Listed:
  • Carlos Candelo-Zuluaga

    (Electrical Engineering Department, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

  • Jordi-Roger Riba

    (Electrical Engineering Department, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

  • Carlos López-Torres

    (Electrical Engineering Department, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

  • Antoni Garcia

    (Electrical Engineering Department, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain)

Abstract

Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes the feasibility of detecting such harmful faults in their early stage, with only one short-circuited turn, since there is a lack of works related to this topic in multi-phase fPMa-SynRMs. Two methods are tested for this purpose, the analysis of the spectral content of the zero-sequence voltage component (ZSVC) and the analysis of the stator current spectra, also known as motor current signature analysis (MCSA), which is a well-known fault diagnosis method. This paper compares the performance and sensitivity of both methods under different operating conditions. It is proven that inter-turn faults can be detected in the early stage, with the ZSVC providing more sensitivity than the MCSA method. It is also proven that the working conditions have little effect on the sensitivity of both methods. To conclude, this paper proposes two inter-turn fault indicators and the threshold values to detect such faults in the early stage, which are calculated from the spectral information of the ZSVC and the line currents.

Suggested Citation

  • Carlos Candelo-Zuluaga & Jordi-Roger Riba & Carlos López-Torres & Antoni Garcia, 2019. "Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 12(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2733-:d:249142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luqman Maraaba & Zakariya Al-Hamouz & Mohammad Abido, 2018. "An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    3. Yucai Wu & Guanhua Ma, 2019. "Anti-Interference and Location Performance for Turn-to-Turn Short Circuit Detection in Turbo-Generator Rotor Windings," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Hong-Chan Chang & Yu-Ming Jheng & Cheng-Chien Kuo & Yu-Min Hsueh, 2019. "Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach," Energies, MDPI, vol. 12(8), pages 1-12, April.
    5. Baoshan Huang & Guojin Feng & Xiaoli Tang & James Xi Gu & Guanghua Xu & Robert Cattley & Fengshou Gu & Andrew D. Ball, 2019. "A Performance Evaluation of Two Bispectrum Analysis Methods Applied to Electrical Current Signals for Monitoring Induction Motor-Driven Systems," Energies, MDPI, vol. 12(8), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.
    2. Tanvir Alam Shifat & Rubiya Yasmin & Jang-Wook Hur, 2021. "A Data Driven RUL Estimation Framework of Electric Motor Using Deep Electrical Feature Learning from Current Harmonics and Apparent Power," Energies, MDPI, vol. 14(11), pages 1-21, May.
    3. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Dinesh V. Thangamuthu & Antoni Garcia, 2020. "Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 13(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Wojciech Pietrowski & Konrad Górny, 2020. "Analysis of Torque Ripples of an Induction Motor Taking into Account a Inter-Turn Short-Circuit in a Stator Winding," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Milan Oravec & Pavol Lipovský & Miroslav Šmelko & Pavel Adamčík & Mirosław Witoś & Jerzy Kwaśniewski, 2021. "Low-Frequency Magnetic Fields in Diagnostics of Low-Speed Electrical and Mechanical Systems," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    4. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Dinesh V. Thangamuthu & Antoni Garcia, 2020. "Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 13(13), pages 1-17, July.
    5. Lien-Kai Chang & Shun-Hong Wang & Mi-Ching Tsai, 2020. "Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering," Energies, MDPI, vol. 13(17), pages 1-12, August.
    6. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    7. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Diao, Kaikai & Sun, Xiaodong & Bramerdorfer, Gerd & Cai, Yingfeng & Lei, Gang & Chen, Long, 2022. "Design optimization of switched reluctance machines for performance and reliability enhancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Markel Fernandez & Andres Sierra-Gonzalez & Endika Robles & Iñigo Kortabarria & Edorta Ibarra & Jose Luis Martin, 2020. "New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives," Energies, MDPI, vol. 13(3), pages 1-19, January.
    10. Zorig, Assam & Hedayati Kia, Shahin & Chouder, Aissa & Rabhi, Abdelhamid, 2022. "A comparative study for stator winding inter-turn short-circuit fault detection based on harmonic analysis of induction machine signatures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 273-288.
    11. Opare, Emmanuel Ohene & Struhs, Ethan & Mirkouei, Amin, 2021. "A comparative state-of-technology review and future directions for rare earth element separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    13. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    14. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    15. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    16. Luo Wang & Yonggang Li & Junqing Li, 2018. "Diagnosis of Inter-Turn Short Circuit of Synchronous Generator Rotor Winding Based on Volterra Kernel Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    17. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    18. Depraiter, Lisa & Goutte, Stephane, 2023. "The role and challenges of rare earths in the energy transition," Resources Policy, Elsevier, vol. 86(PB).
    19. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2733-:d:249142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.