IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p453-d721078.html
   My bibliography  Save this article

Diagnosis for Slight Bearing Fault in Induction Motor Based on Combination of Selective Features and Machine Learning

Author

Listed:
  • Hisahide Nakamura

    (Research and Development Division, TOENEC Corporation, 1-79, Takiharu-cho, Minami-ku, Nagoya 457-0819, Japan)

  • Yukio Mizuno

    (Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan)

Abstract

Induction motors are widely used in industry and are essential to industrial processes. The faults in motors lead to high repair costs and cause financial losses resulting from unexpected downtime. Early detection of faults in induction motors has become necessary and critical in reducing costs. Most motor faults are caused by bearing failure. Machine learning-based diagnostic methods are proposed in this study. These methods use effective features. First, load currents of healthy and faulty motors are measured while the rotating speed is changing continuously. Second, experiments revealed the relationship between the magnitude of the amplitude of specific signals and the rotating speed, and the rotating speed is treated as a new feature. Third, machine learning-based diagnoses are conducted. Finally, the effectiveness of machine learning-based diagnostic methods is verified using experimental data.

Suggested Citation

  • Hisahide Nakamura & Yukio Mizuno, 2022. "Diagnosis for Slight Bearing Fault in Induction Motor Based on Combination of Selective Features and Machine Learning," Energies, MDPI, vol. 15(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:453-:d:721078
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Skora & Pawel Ewert & Czeslaw T. Kowalski, 2019. "Selected Rolling Bearing Fault Diagnostic Methods in Wheel Embedded Permanent Magnet Brushless Direct Current Motors," Energies, MDPI, vol. 12(21), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shujie Yang & Peikun Yang & Hao Yu & Jing Bai & Wuwei Feng & Yuxiang Su & Yulin Si, 2022. "A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment," Energies, MDPI, vol. 15(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    2. Pawel Ewert & Teresa Orlowska-Kowalska & Kamila Jankowska, 2021. "Effectiveness Analysis of PMSM Motor Rolling Bearing Fault Detectors Based on Vibration Analysis and Shallow Neural Networks," Energies, MDPI, vol. 14(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:453-:d:721078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.