IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3480-d380772.html
   My bibliography  Save this article

A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications

Author

Listed:
  • Bilal Naji Alhasnawi

    (Electrical Engineering Department, University of Basrah, 61001 Basrah, Iraq)

  • Basil H. Jasim

    (Electrical Engineering Department, University of Basrah, 61001 Basrah, Iraq)

  • Walid Issa

    (Electrical Engineering Department, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK)

  • Amjad Anvari-Moghaddam

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

This research work puts forward a hybrid AC/DC microgrid with renewable energy sources pertaining to consumer’s residential area for meeting the demand. Currently, the power generation and consumption have experienced key transformations. One such tendency would be integration of microgrids into the distribution network that is characterized by high penetration of renewable energy resources as well as operations in parallel. Traditional droop control can be employed in order to get an accurate steady state averaged active power sharing amongst parallel inverters pertaining to hybrid AC/DC microgrid. It is presumed that there would be similar transient average power responses, and there would be no circulating current flowing between the units for identical inverters possessing the same droop gain. However, the instantaneous power could be affected by different line impedances considerably and thus resulting in variation in circulating power that flows amongst inverters, especially during unexpected disturbances like load changes. This power, if absorbed by the inverter, could result in sudden DC-link voltage rise and trip the inverter, which in turn causes performance degradation of the entire hybrid microgrid. When the hybrid generators act as unidirectional power source, the issue worsens further. In this research work, we have put forward a new distributed coordinated control pertaining to hybrid microgrid, which can be applied for both grid connected and islanded modes that include variable loads and hybrid energy resources. Also, in order to choose the most effective controller scheme, a participation factor analysis has been designed for binding the DC-link voltage as well as reducing the circulating power. Moreover, to both photovoltaic stations and wind turbines, maximum power point tracking (MPPT) techniques have been used in order to extract the maximum power from hybrid power system when there is discrepancy in environmental circumstances. Lastly, the feasibility and effectiveness pertaining to the introduced strategy for hybrid microgrid in various modes are confirmed via simulation results.

Suggested Citation

  • Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3480-:d:380772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junjie Ma & Xudong Wang & Jinfeng Liu & Hanying Gao, 2019. "An Improved Droop Control Method for Voltage-Source Inverter Parallel Systems Considering Line Impedance Differences," Energies, MDPI, vol. 12(6), pages 1-17, March.
    2. Jaume Miret & José Luís García de Vicuña & Ramón Guzmán & Antonio Camacho & Mohammad Moradi Ghahderijani, 2017. "A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters," Energies, MDPI, vol. 10(10), pages 1-27, October.
    3. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    4. João Faria & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2019. "Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System," Energies, MDPI, vol. 12(5), pages 1-24, March.
    5. Biying Ren & Xiangdong Sun & Shasha Chen & Huan Liu, 2018. "A Compensation Control Scheme of Voltage Unbalance Using a Combined Three-Phase Inverter in an Islanded Microgrid," Energies, MDPI, vol. 11(9), pages 1-15, September.
    6. Ying-Yi Hong & Yong-Zhen Lai & Yung-Ruei Chang & Yih-Der Lee & Chia-Hui Lin, 2018. "Optimizing Energy Storage Capacity in Islanded Microgrids Using Immunity-Based Multiobjective Planning," Energies, MDPI, vol. 11(3), pages 1-15, March.
    7. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    8. Arash Moradzadeh & Omid Sadeghian & Kazem Pourhossein & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    9. Shuai, Zhikang & Sun, Yingyun & Shen, Z. John & Tian, Wei & Tu, Chunming & Li, Yan & Yin, Xin, 2016. "Microgrid stability: Classification and a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali M. Jasim & Basil H. Jasim & Bogdan-Constantin Neagu & Simo Attila, 2023. "Electric Vehicle Battery-Connected Parallel Distribution Generators for Intelligent Demand Management in Smart Microgrids," Energies, MDPI, vol. 16(6), pages 1-29, March.
    2. Muhammad Awais & Abdul Rehman Yasin & Mudassar Riaz & Bilal Saqib & Saba Zia & Amina Yasin, 2021. "Robust Sliding Mode Control of a Unipolar Power Inverter," Energies, MDPI, vol. 14(17), pages 1-15, August.
    3. Yuko Hirase & Kazusa Uezaki & Dai Orihara & Hiroshi Kikusato & Jun Hashimoto, 2021. "Characteristic Analysis and Indexing of Multimachine Transient Stabilization Using Virtual Synchronous Generator Control," Energies, MDPI, vol. 14(2), pages 1-23, January.
    4. Bilal Naji Alhasnawi & Basil H. Jasim & M. Dolores Esteban, 2020. "A New Robust Energy Management and Control Strategy for a Hybrid Microgrid System Based on Green Energy," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    5. Seung-Yong Lee & Jae-Jung Jung, 2022. "The Circulating Current Reduction Control Method for Asynchronous Carrier Phases of Parallel Connected Inverters," Energies, MDPI, vol. 15(5), pages 1-22, March.
    6. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    7. Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    8. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    9. Bilal Naji Alhasnawi & Basil H. Jasim & Pierluigi Siano & Josep M. Guerrero, 2021. "A Novel Real-Time Electricity Scheduling for Home Energy Management System Using the Internet of Energy," Energies, MDPI, vol. 14(11), pages 1-29, May.
    10. Bilal Naji Alhasnawi & Basil H. Jasim & Arshad Naji Alhasnawi & Bishoy E. Sedhom & Ali M. Jasim & Azam Khalili & Vladimír Bureš & Alessandro Burgio & Pierluigi Siano, 2022. "A Novel Approach to Achieve MPPT for Photovoltaic System Based SCADA," Energies, MDPI, vol. 15(22), pages 1-29, November.
    11. Bilal Naji Alhasnawi & Basil H. Jasim & Bishoy E. Sedhom & Eklas Hossain & Josep M. Guerrero, 2021. "A New Decentralized Control Strategy of Microgrids in the Internet of Energy Paradigm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    12. Sultan Alghamdi & Hatem F. Sindi & Ahmed Al-Durra & Abdullah Ali Alhussainy & Muhyaddin Rawa & Hossam Kotb & Kareem M. AboRas, 2022. "Reduction in Voltage Harmonics of Parallel Inverters Based on Robust Droop Controller in Islanded Microgrid," Mathematics, MDPI, vol. 11(1), pages 1-30, December.
    13. Bilal Naji Alhasnawi & Basil H. Jasim & Zain-Aldeen S. A. Rahman & Josep M. Guerrero & M. Dolores Esteban, 2021. "A Novel Internet of Energy Based Optimal Multi-Agent Control Scheme for Microgrid including Renewable Energy Resources," IJERPH, MDPI, vol. 18(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Monica Purushotham & Kowsalya Muniswamy, 2019. "Reinforced Droop for Active Current Sharing in Parallel NPC Inverter for Islanded AC Microgrid Application," Energies, MDPI, vol. 12(16), pages 1-27, August.
    3. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Haifeng Liang & Yue Dong & Yuxi Huang & Can Zheng & Peng Li, 2018. "Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration," Energies, MDPI, vol. 11(9), pages 1-18, August.
    5. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    6. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    7. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    8. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    9. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    10. Panagis N. Vovos & Ioannis D. Bouloumpasis & Konstantinos G. Georgakas, 2020. "Assessment Indexes for Converter P-Q Control Coupling," Energies, MDPI, vol. 13(5), pages 1-17, March.
    11. Ricardo Echeverri Mart nez & Eduardo Caicedo Bravo & Wilfredo Alfonso Morales & Juan David Garcia-Racines, 2020. "A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 325-341.
    12. Tomas Macak & Jan Hron & Jaromir Stusek, 2020. "A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    13. Elnaz Azizi & Mohammad T. H. Beheshti & Sadegh Bolouki, 2021. "Event Matching Classification Method for Non-Intrusive Load Monitoring," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    14. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    15. He, Wangli & Li, Chengyuan & Cai, Chenhao & Qing, Xiangyun & Du, Wenli, 2024. "Suppressing active power fluctuations at PCC in grid-connection microgrids via multiple BESSs: A collaborative multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 373(C).
    16. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    17. Neto, Pedro Bezerra Leite & Saavedra, Osvaldo R. & Oliveira, Denisson Q., 2020. "The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids," Renewable Energy, Elsevier, vol. 147(P1), pages 339-355.
    18. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    19. Stefano Dettori & Alessandro Maddaloni & Filippo Galli & Valentina Colla & Federico Bucciarelli & Damaso Checcacci & Annamaria Signorini, 2021. "Steam Turbine Rotor Stress Control through Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(13), pages 1-30, July.
    20. Grażyna Frydrychowicz-Jastrzębska, 2018. "El Hierro Renewable Energy Hybrid System: A Tough Compromise," Energies, MDPI, vol. 11(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3480-:d:380772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.