IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5777-d559304.html
   My bibliography  Save this article

A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs

Author

Listed:
  • Li Zeng

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China)

  • Tian Xia

    (Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China)

  • Salah K. Elsayed

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Mahrous Ahmed

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Mostafa Rezaei

    (Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111, Australia)

  • Kittisak Jermsittiparsert

    (College of Innovative Business and Accountancy, Dhurakij Pundit University, Bangkok 10210, Thailand)

  • Udaya Dampage

    (Faculty of Engineering, Kotelawala Defence University, Ratmalana 10390, Sri Lanka)

  • Mohamed A. Mohamed

    (Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
    Department of Electrical Engineering, Fuzhou University, Fuzhou 350116, China)

Abstract

A static VAR compensator (SVC) is a critical component for reactive power compensation in electric arc furnaces (EAFs) that is used to relieve the flicker impacts and maintain the voltage level. A weak voltage profile can not only reduce the power-quality services, but can also result in system instability in severe cases. The cybersecurity of EAFs is becoming a significant concern due to their cyber-physical structure. The reliance of SVC controllers on reactive power measurement and network communications has resulted in a cyber-vulnerability point for unauthorized access to the EAF, which can affect its normal operation. This paper addresses concerns about cyber attacks on EAFs, which can cause network communication issues in measurement data for SVCs. Three significant and different types of cyber attacks that are launched on SVC controllers—a replay attack, delay attack, and false data injection attack (FDIA)—were simulated and investigated. In order to stop the activities of cyber attacks, a secured anomaly detection model (ADM) based on a prediction interval is proposed. The proposed model is dependent on a support vector regression and a new smooth cost function for constructing the optimal and symmetrical intervals. A modified algorithm based on teaching–learning-based optimization was developed to adapt the ADM’s parameters during training. The simulation’s outcomes on a genuine dataset showed the strong capability of the proposed model against cyber attacks in EAFs.

Suggested Citation

  • Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5777-:d:559304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Kunjie & While, Lyndon & Reynolds, Mark & Wang, Xin & Liang, J.J. & Zhao, Liang & Wang, Zhenlei, 2018. "Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization," Energy, Elsevier, vol. 148(C), pages 469-481.
    2. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar, 2020. "Thermodynamic, Economic, and Environmental Analyses of a Waste-Fired Trigeneration Plant," Energies, MDPI, vol. 13(10), pages 1-18, May.
    3. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    4. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Xiao & Wei Hou, 2022. "Cost Estimation Process of Green Energy Production and Consumption Using Probability Learning Approach," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    2. Felipe Ramos & Aline Pinheiro & Rafaela Nascimento & Washington de Araujo Silva Junior & Mohamed A. Mohamed & Andres Annuk & Manoel H. N. Marinho, 2022. "Development of Operation Strategy for Battery Energy Storage System into Hybrid AC Microgrids," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    3. Wei Hou & Rita Yi Man Li & Thanawan Sittihai, 2022. "Management Optimization of Electricity System with Sustainability Enhancement," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    4. Isa Ebtehaj & Keyvan Soltani & Afshin Amiri & Marzban Faramarzi & Chandra A. Madramootoo & Hossein Bonakdari, 2021. "Prognostication of Shortwave Radiation Using an Improved No-Tuned Fast Machine Learning," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    5. Qunpeng Fan, 2022. "Management and Policy Modeling of the Market Using Artificial Intelligence," Sustainability, MDPI, vol. 14(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Dan Ling & Chaosong Li & Yan Wang & Pengye Zhang, 2022. "Fault Detection and Identification of Furnace Negative Pressure System with CVA and GA-XGBoost," Energies, MDPI, vol. 15(17), pages 1-19, August.
    4. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    5. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    6. Bilal Naji Alhasnawi & Basil H. Jasim & Arshad Naji Alhasnawi & Bishoy E. Sedhom & Ali M. Jasim & Azam Khalili & Vladimír Bureš & Alessandro Burgio & Pierluigi Siano, 2022. "A Novel Approach to Achieve MPPT for Photovoltaic System Based SCADA," Energies, MDPI, vol. 15(22), pages 1-29, November.
    7. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    8. Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
    9. Bilal Naji Alhasnawi & Basil H. Jasim & Pierluigi Siano & Josep M. Guerrero, 2021. "A Novel Real-Time Electricity Scheduling for Home Energy Management System Using the Internet of Energy," Energies, MDPI, vol. 14(11), pages 1-29, May.
    10. Young-Eun Jeon & Suk-Bok Kang & Jung-In Seo, 2022. "Hybrid Predictive Modeling for Charging Demand Prediction of Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    11. Sultan Alghamdi & Hatem F. Sindi & Ahmed Al-Durra & Abdullah Ali Alhussainy & Muhyaddin Rawa & Hossam Kotb & Kareem M. AboRas, 2022. "Reduction in Voltage Harmonics of Parallel Inverters Based on Robust Droop Controller in Islanded Microgrid," Mathematics, MDPI, vol. 11(1), pages 1-30, December.
    12. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Muhammad Awais & Abdul Rehman Yasin & Mudassar Riaz & Bilal Saqib & Saba Zia & Amina Yasin, 2021. "Robust Sliding Mode Control of a Unipolar Power Inverter," Energies, MDPI, vol. 14(17), pages 1-15, August.
    14. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    16. Dimitra G. Kyriakou & Fotios D. Kanellos, 2022. "Optimal Operation of Microgrids Comprising Large Building Prosumers and Plug-in Electric Vehicles Integrated into Active Distribution Networks," Energies, MDPI, vol. 15(17), pages 1-26, August.
    17. Yan Xiong & Jiakun Fang, 2022. "Co-Operative Optimization Framework for Energy Management Considering CVaR Assessment and Game Theory," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Álvaro Gutiérrez, 2022. "Optimization Trends in Demand-Side Management," Energies, MDPI, vol. 15(16), pages 1-3, August.
    19. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    20. Bilal Naji Alhasnawi & Basil H. Jasim & Bishoy E. Sedhom & Eklas Hossain & Josep M. Guerrero, 2021. "A New Decentralized Control Strategy of Microgrids in the Internet of Energy Paradigm," Energies, MDPI, vol. 14(8), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5777-:d:559304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.