IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2570-d1091737.html
   My bibliography  Save this article

Electric Vehicle Battery-Connected Parallel Distribution Generators for Intelligent Demand Management in Smart Microgrids

Author

Listed:
  • Ali M. Jasim

    (Electrical Engineering Department, University of Basrah, Basrah 61001, Iraq
    Department of Communications Engineering, Iraq University College, Basrah 61001, Iraq)

  • Basil H. Jasim

    (Electrical Engineering Department, University of Basrah, Basrah 61001, Iraq)

  • Bogdan-Constantin Neagu

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Simo Attila

    (Power Systems Department, Politehnica University Timisoara, No. 2, V. Parvan Bvd., 300223 Timisoara, Romania)

Abstract

Renewable energy penetration increases Smart Grid (SG) instability. A power balance between consumption and production can mitigate this instability. For this, intelligent and optimizing techniques can be used to properly combine and manage storage devices like Electric Vehicle Batteries (EVBs) with Demand-Side Management (DSM) strategies. The EVB helps distribution networks with auxiliary services, backup power, reliability, demand response, peak shaving, lower renewable power production’s climate unpredictability, etc. In this paper, a new energy management system based on Artificial Neural Networks (ANNs) is developed to maximize the performance of islanded SG-connected EVBs. The proposed ANN controller can operate at specified periods based on the demand curve and EVB charge level to implement a peak load shaving (PLS) DSM strategy. The intelligent controller’s inputs include the time of day and the EVB’s State of Charge (SOC). After the controller detects a peak demand, it alerts the EVB to start delivering power. This decrease in peak demand enhances the load factor and benefits both SG investors and end users. In this study, the adopted SG includes five parallel Distribution Generators (DGs) powered by renewable resources, which are three solar Photovoltaics (PVs) and two Wind Turbines (WTs). Sharing power among these DGs ensures the SG’s stability and efficiency. To fulfill demand problem-free, this study dynamically alters the power flow toward equity in power sharing using virtual impedance-based adaptive primary control level. This study proposes a decentralized robust hierarchical secondary control system employing Genetic Algorithm (GA)-optimized Proportional-Integral (PI) controller parameters with fine-grained online tuning using ANNs to restore frequency and voltage deviations. The proposed system is evidenced to be effective through MATLAB simulations and real-time data analysis on the ThingSpeak platform using internet energy technology. Our presented model not only benefits users by enhancing their utility but also reduces energy costs with robust implementation of a control structure by restoring any frequency and voltage deviations by distributing power equally among DGs regardless of demand condition variations.

Suggested Citation

  • Ali M. Jasim & Basil H. Jasim & Bogdan-Constantin Neagu & Simo Attila, 2023. "Electric Vehicle Battery-Connected Parallel Distribution Generators for Intelligent Demand Management in Smart Microgrids," Energies, MDPI, vol. 16(6), pages 1-29, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2570-:d:1091737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bilal Naji Alhasnawi & Basil H. Jasim & M. Dolores Esteban, 2020. "A New Robust Energy Management and Control Strategy for a Hybrid Microgrid System Based on Green Energy," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    2. Neves, Sónia Almeida & Marques, António Cardoso & Fuinhas, José Alberto, 2018. "On the drivers of peak electricity demand: What is the role played by battery electric cars?," Energy, Elsevier, vol. 159(C), pages 905-915.
    3. Lange, Christopher & Rueß, Alexandra & Nuß, Andreas & Öchsner, Richard & März, Martin, 2020. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm," Applied Energy, Elsevier, vol. 280(C).
    4. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    5. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    6. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    7. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenhui Xu & Yunkai Huang, 2023. "Integrated Demand Response in Multi-Energy Microgrids: A Deep Reinforcement Learning-Based Approach," Energies, MDPI, vol. 16(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilal Naji Alhasnawi & Basil H. Jasim & Arshad Naji Alhasnawi & Bishoy E. Sedhom & Ali M. Jasim & Azam Khalili & Vladimír Bureš & Alessandro Burgio & Pierluigi Siano, 2022. "A Novel Approach to Achieve MPPT for Photovoltaic System Based SCADA," Energies, MDPI, vol. 15(22), pages 1-29, November.
    2. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Bilal Naji Alhasnawi & Basil H. Jasim & Pierluigi Siano & Josep M. Guerrero, 2021. "A Novel Real-Time Electricity Scheduling for Home Energy Management System Using the Internet of Energy," Energies, MDPI, vol. 14(11), pages 1-29, May.
    4. Ng, Rong Wang & Begam, K.M. & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2022. "A novel dynamic two-stage controller of battery energy storage system for maximum demand reductions," Energy, Elsevier, vol. 248(C).
    5. Bilal Naji Alhasnawi & Basil H. Jasim & Bishoy E. Sedhom & Eklas Hossain & Josep M. Guerrero, 2021. "A New Decentralized Control Strategy of Microgrids in the Internet of Energy Paradigm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    6. Chen, Xiaojiao & Huang, Liansheng & Liu, Junbo & Song, Dongran & Yang, Sheng, 2022. "Peak shaving benefit assessment considering the joint operation of nuclear and battery energy storage power stations: Hainan case study," Energy, Elsevier, vol. 239(PA).
    7. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    8. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    9. Lei Li & Yude Wu & Yi Lu & Xiao Yang & Qiyang Wang & Xiaoai Wang & Yulin Wang, 2022. "Numerical Simulation on the Structural Design of a Multi-Pore Water Diffuser during the External Ice Melting Process of an Ice Storage System," Energies, MDPI, vol. 15(6), pages 1-17, March.
    10. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    11. Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    12. Ahmed M. Hussien & Jonghoon Kim & Abdulaziz Alkuhayli & Mohammed Alharbi & Hany M. Hasanien & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado, 2022. "Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    13. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    16. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    17. Alexander Micallef & Cyril Spiteri Staines & Alan Cassar, 2022. "Utility-Scale Storage Integration in the Maltese Medium-Voltage Distribution Network," Energies, MDPI, vol. 15(8), pages 1-20, April.
    18. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    19. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.
    20. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2570-:d:1091737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.