IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1589-d114837.html
   My bibliography  Save this article

A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters

Author

Listed:
  • Jaume Miret

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • José Luís García de Vicuña

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Ramón Guzmán

    (Department of Automatic Control, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Antonio Camacho

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Mohammad Moradi Ghahderijani

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

Abstract

In the recently deregulated electricity market, distributed generation based on renewable sources is becoming more and more relevant. In this area, two main distributed scenarios are focusing the attention of recent research: grid-connected mode, where the generation sources are connected to a grid mainly supplied by big power plants, and islanded mode, where the distributed sources, energy storage devices, and loads compose an autonomous entity that in its general form can be named a microgrid. To conduct a successful research in these two scenarios, it is essential to have a flexible experimental setup. This work deals with the description of a real laboratory setup composed of four nodes that can emulate both scenarios of a distributed generation network. A comprehensive description of the hardware and software setup will be done, focusing especially in the dual-core DSP used for control purposes, which is next to the industry standards and able to emulate real complexities. A complete experimental section will show the main features of the system.

Suggested Citation

  • Jaume Miret & José Luís García de Vicuña & Ramón Guzmán & Antonio Camacho & Mohammad Moradi Ghahderijani, 2017. "A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters," Energies, MDPI, vol. 10(10), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1589-:d:114837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Camacho & Miguel Castilla & Franco Canziani & Carlos Moreira & Paulo Coelho & Mario Gomes & Pedro E. Mercado, 2017. "Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids," Energies, MDPI, vol. 10(12), pages 1-25, December.
    2. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    3. Miguel Garnica & Luís García de Vicuña & Jaume Miret & Antonio Camacho & Ramón Guzmán, 2018. "Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters," Energies, MDPI, vol. 11(8), pages 1-20, July.
    4. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    5. Gabriel Nasser Doyle de Doile & Pedro Paulo Balestrassi & Miguel Castilla & Antonio Carlos Zambroni de Souza & Jaume Miret, 2023. "An Experimental Approach for Secondary Consensus Control Tuning for Inverter-Based Islanded Microgrids," Energies, MDPI, vol. 16(1), pages 1-15, January.
    6. Hong Zhu & Xing Zhang & Ming Li & Xiaoxi Liu, 2019. "Research on Multifunctional High-Power Grid Source Simulator System with Synchronous Generator, Line Impedance Imitation, and ZIP Load Emulator," Energies, MDPI, vol. 12(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    4. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    5. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    6. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    7. Tine L. Vandoorn & Jan Van de Vyver & Louis Gevaert & Lieven Degroote & Lieven Vandevelde, 2015. "Congestion Control Algorithm in Distribution Feeders: Integration in a Distribution Management System," Energies, MDPI, vol. 8(6), pages 1-20, June.
    8. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    9. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    10. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    11. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    12. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    14. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    15. Yong Long & Yu Wang & Chengrong Pan, 2018. "Incentive Mechanism of Micro-grid Project Development," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    16. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    17. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    18. Anthony L. D'Agostino & Peter D. Lund & Johannes Urpelainen, 2016. "The business of distributed solar power: a comparative case study of centralized charging stations and solar microgrids," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 640-648, November.
    19. Musaed Alhussein & Syed Irtaza Haider & Khursheed Aurangzeb, 2019. "Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance," Energies, MDPI, vol. 12(8), pages 1-27, April.
    20. Jayamaha, D.K.J.S. & Lidula, N.W.A. & Rajapakse, A.D., 2020. "Protection and grounding methods in DC microgrids: Comprehensive review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1589-:d:114837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.