IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3377-d379025.html
   My bibliography  Save this article

Optimal Frequency Support of Variable-Speed Hydropower Plants at Telemark and Vestfold, Norway: Future Scenarios of Nordic Power System

Author

Listed:
  • Martha N. Acosta

    (School of Mechanical and Electrical Engineering, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico
    Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, 3918 Porsgrunn, Norway)

  • Daniel Pettersen

    (Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, 3918 Porsgrunn, Norway)

  • Francisco Gonzalez-Longatt

    (Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, 3918 Porsgrunn, Norway)

  • Jaime Peredo Argos

    (Gamesa Electric, 39200 Cantabria, Spain)

  • Manuel A. Andrade

    (School of Mechanical and Electrical Engineering, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico)

Abstract

The integration of renewable resources is quickly growing in the Nordic power system (NPS), and it has led to increasing challenges for the operation and control of the NPS. Nordic countries require that the first-generation power plants have a more flexible operation regime to overcomes power imbalances coming from fluctuations of the demand and supply. This paper assesses optimal frequency support of variable-speed hydropower plants installed in Telemark and Vestfold, Norway, considering future scenarios of NPS. The total kinetic energy of the NPS is expected to be significantly reduced in the future. This paper looks into the implementation of hydropower units with a variable-speed operation regime and battery energy storage systems (BESS), equipped with fast-active power controller (FAPC) technology, to provide fast frequency response after a system frequency disturbance. The frequency support was formulated as an optimization process; therefore, the parameter of the FAPC was optimally calculated for future scenarios of low inertia in NPS. Three main futures scenarios were developed for technology penetration in the Vestfold and Telemark area in Norway. The simulation results showed that the integration variable-speed hydropower units and BESS technologies improved the frequency response even in low-kinetic energy scenarios.

Suggested Citation

  • Martha N. Acosta & Daniel Pettersen & Francisco Gonzalez-Longatt & Jaime Peredo Argos & Manuel A. Andrade, 2020. "Optimal Frequency Support of Variable-Speed Hydropower Plants at Telemark and Vestfold, Norway: Future Scenarios of Nordic Power System," Energies, MDPI, vol. 13(13), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3377-:d:379025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weitzel, Timm & Glock, C. H., 2018. "Energy Management for Stationary Electric Energy Storage Systems: A Systematic Literature Review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88880, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    4. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SungHoon Lim & Taewan Kim & Kipo Yoon & DongHee Choi & Jung-Wook Park, 2022. "A Study on Frequency Stability and Primary Frequency Response of the Korean Electric Power System Considering the High Penetration of Wind Power," Energies, MDPI, vol. 15(5), pages 1-16, February.
    2. Martha N. Acosta & Choidorj Adiyabazar & Francisco Gonzalez-Longatt & Manuel A. Andrade & José Rueda Torres & Ernesto Vazquez & Jesús Manuel Riquelme Santos, 2020. "Optimal Under-Frequency Load Shedding Setting at Altai-Uliastai Regional Power System, Mongolia," Energies, MDPI, vol. 13(20), pages 1-18, October.
    3. Martha N. Acosta & Francisco Gonzalez-Longatt & Manuel A. Andrade & José Luis Rueda Torres & Harold R. Chamorro, 2021. "Assessment of Daily Cost of Reactive Power Procurement by Smart Inverters," Energies, MDPI, vol. 14(16), pages 1-11, August.
    4. Martha N. Acosta & Francisco Gonzalez-Longatt & Danijel Topić & Manuel A. Andrade, 2021. "Optimal Microgrid–Interactive Reactive Power Management for Day–Ahead Operation," Energies, MDPI, vol. 14(5), pages 1-20, February.
    5. Martha N. Acosta & Francisco Gonzalez-Longatt & Juan Manuel Roldan-Fernandez & Manuel Burgos-Payan, 2021. "A Coordinated Control of Offshore Wind Power and BESS to Provide Power System Flexibility," Energies, MDPI, vol. 14(15), pages 1-17, July.
    6. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    7. Nedaei, Mojtaba & Walsh, Philip R., 2022. "Technical performance evaluation and optimization of a run-of-river hydropower facility," Renewable Energy, Elsevier, vol. 182(C), pages 343-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    2. Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
    3. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    4. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    5. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    6. Beatrice Marchi & Simone Zanoni & Marco Pasetti, 2019. "Multi-Period Newsvendor Problem for the Management of Battery Energy Storage Systems in Support of Distributed Generation," Energies, MDPI, vol. 12(23), pages 1-13, December.
    7. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    8. Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    9. Arrinda, M. & Berecibar, M. & Oyarbide, M. & Macicior, H. & Muxika, E. & Messagie, M., 2020. "Levelized cost of electricity calculation of the energy generation plant of a CO2 neutral micro-grid," Energy, Elsevier, vol. 208(C).
    10. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    11. Trocino, Stefano & Lo Faro, Massimiliano & Zignani, Sabrina Campagna & Antonucci, Vincenzo & Aricò, Antonino Salvatore, 2019. "High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650 °C)," Applied Energy, Elsevier, vol. 233, pages 386-394.
    12. Naowarat Tephiruk & Weerawoot Kanokbannakorn & Thongchart Kerdphol & Yasunori Mitani & Komsan Hongesombut, 2018. "Fuzzy Logic Control of a Battery Energy Storage System for Stability Improvement in an Islanded Microgrid," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    13. Pyakurel, Urmila & Khanal, Durga Prasad & Dhamala, Tanka Nath, 2023. "Abstract network flow with intermediate storage for evacuation planning," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1178-1193.
    14. Wei, Shaoyuan & Murgovski, Nikolce & Jiang, Jiuchun & Hu, Xiaosong & Zhang, Weige & Zhang, Caiping, 2020. "Stochastic optimization of a stationary energy storage system for a catenary-free tramline," Applied Energy, Elsevier, vol. 280(C).
    15. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
    16. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Marco Pasetti, 2021. "Assessing the Effectiveness of the Energy Storage Rule-Based Control in Reducing the Power Flow Uncertainties Caused by Distributed Photovoltaic Systems," Energies, MDPI, vol. 14(8), pages 1-25, April.
    18. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3377-:d:379025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.