IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5849-d442220.html
   My bibliography  Save this article

Analysis and Design Guidelines for Current Control Loops of Grid-Connected Converters Based on Mathematical Models

Author

Listed:
  • Gonzalo Abad

    (Electronics and Computing Department, Mondragon University, 20500 Mondragon, Spain)

  • Alain Sanchez-Ruiz

    (Ingeteam R&D Europe S.L., 48710 Zamudio, Spain)

  • Juan José Valera-García

    (Ingeteam R&D Europe S.L., 48710 Zamudio, Spain)

  • Aritz Milikua

    (Electronics and Computing Department, Mondragon University, 20500 Mondragon, Spain)

Abstract

Having a method for analyzing and designing regulators of controls that contain many current loops such as active filters is not a trivial task. There can be many parameters of regulators and filters that must be carefully selected in order to fulfill certain desired requirements. For instance, these can be stability, dynamic response, robustness under uncertainty of parameters, and rejection capability to switching harmonics. Hence, this paper provides general analysis guidelines for designing current control loops by using mathematical models in an αβ reference frame. Then, by using the proposed modeling tool, a multi-objective tuning algorithm is proposed that helps obtain all the control loops’ regulator and filter parameters, meeting all the desired requirements. Thus, the proposed analysis and design methodology is illustrated by applying it to three different controls conceived in a dq rotating reference frame with PI (Proportional Integral) regulators. The first control presents two current loops (simple dq current control), the second control uses four current loops (dual vector control, for unbalanced loads), while the third control presents eight current loops (active filter controlling current harmonics). Several experimental and simulation results show the effectiveness and usefulness of the proposed method. Since the mathematical model employed is in the αβ reference frame, it can also be easily applied to controls conceived in a αβ reference frame using resonant regulators, providing also a common comparative framework.

Suggested Citation

  • Gonzalo Abad & Alain Sanchez-Ruiz & Juan José Valera-García & Aritz Milikua, 2020. "Analysis and Design Guidelines for Current Control Loops of Grid-Connected Converters Based on Mathematical Models," Energies, MDPI, vol. 13(21), pages 1-47, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5849-:d:442220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gonzalo Abad & Aitor Laka & Gabriel Saavedra & Jon Andoni Barrena, 2018. "Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies," Energies, MDPI, vol. 11(6), pages 1-31, May.
    2. Xudong Cao & Kun Dong & Xueliang Wei, 2020. "An Improved Control Method Based on Source Current Sampled for Shunt Active Power Filters," Energies, MDPI, vol. 13(6), pages 1-14, March.
    3. Mihaela Popescu & Alexandru Bitoleanu & Constantin Vlad Suru & Mihaita Linca & Gheorghe Eugen Subtirelu, 2020. "Adaptive Control of DC Voltage in Three-Phase Three-Wire Shunt Active Power Filters Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    4. Markel Zubiaga & Alain Sanchez-Ruiz & Eneko Olea & Eneko Unamuno & Aitor Bilbao & Joseba Arza, 2020. "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services," Energies, MDPI, vol. 13(17), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Frivaldsky, 2021. "Advanced Perspectives for Modeling Simulation and Control of Power Electronic Systems," Energies, MDPI, vol. 14(23), pages 1-2, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agata Bielecka & Daniel Wojciechowski, 2021. "Stability Analysis of Shunt Active Power Filter with Predictive Closed-Loop Control of Supply Current," Energies, MDPI, vol. 14(8), pages 1-17, April.
    2. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    3. Carlos Ruiz & Gonzalo Abad & Markel Zubiaga & Danel Madariaga & Joseba Arza, 2018. "Frequency-Dependent Pi Model of a Three-Core Submarine Cable for Time and Frequency Domain Analysis," Energies, MDPI, vol. 11(10), pages 1-21, October.
    4. Markel Zubiaga & Alain Sanchez-Ruiz & Eneko Olea & Eneko Unamuno & Aitor Bilbao & Joseba Arza, 2020. "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services," Energies, MDPI, vol. 13(17), pages 1-14, August.
    5. Markel Zubiaga & Carmen Cardozo & Thibault Prevost & Alain Sanchez-Ruiz & Eneko Olea & Pedro Izurza & Siam Hasan Khan & Joseba Arza, 2021. "Enhanced TVI for Grid Forming VSC under Unbalanced Faults," Energies, MDPI, vol. 14(19), pages 1-19, September.
    6. Rui Hou & Jian Wu & Huihui Song & Yanbin Qu & Dianguo Xu, 2020. "Applying Directly Modified RDFT Method in Active Power Filter for the Power Quality Improvement of the Weak Power Grid," Energies, MDPI, vol. 13(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5849-:d:442220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.