IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2547-d359441.html
   My bibliography  Save this article

Development and Testing of a Single-Axis Photovoltaic Sun Tracker through the Internet of Things

Author

Listed:
  • Sebastian Gutierrez

    (Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Mexico)

  • Pedro M. Rodrigo

    (Centre for Advanced Studies on Energy and Environment (CEAEMA), University of Jaén, 23071 Jaén, Spain)

  • Jeronimo Alvarez

    (Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Mexico)

  • Arturo Acero

    (Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Mexico)

  • Alejandro Montoya

    (Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Mexico)

Abstract

Solar tracking systems enable increased efficiency of a photovoltaic system through a continuous adjustment of its position with respect to the sun, thus increasing the generation of electrical energy. The integration of photovoltaic solar tracking systems in buildings and houses enables the energy needs of users in a broader way to be covered. This integration is facilitated through the existence of technologies such as access to the Internet through Wi-Fi, which allows developing systems to be encompassed within the domain of the “Internet of Things” (IoT). In this study, a first-of-its-kind “open-loop” solar tracker was designed and developed, which executes the tracking algorithm in the Firebase web service and allows the exchange of data with said service through a NodeMCU development board, which has an integrated Wi-Fi module. After an experimental campaign in Aguascalientes, central Mexico, gains in terms of collected energy on average were measured at 29.9% in May compared to an optimally tilted fixed photovoltaic system. This study opens the possibility of integrating power generation systems into the IoT domain, which, among other things, allows for constant monitoring of the behavior of the system.

Suggested Citation

  • Sebastian Gutierrez & Pedro M. Rodrigo & Jeronimo Alvarez & Arturo Acero & Alejandro Montoya, 2020. "Development and Testing of a Single-Axis Photovoltaic Sun Tracker through the Internet of Things," Energies, MDPI, vol. 13(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2547-:d:359441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sidek, M.H.M. & Azis, N. & Hasan, W.Z.W. & Ab Kadir, M.Z.A. & Shafie, S. & Radzi, M.A.M., 2017. "Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control," Energy, Elsevier, vol. 124(C), pages 160-170.
    2. Şenpinar, Ahmet & Cebeci, Mehmet, 2012. "Evaluation of power output for fixed and two-axis tracking PVarrays," Applied Energy, Elsevier, vol. 92(C), pages 677-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego A. Flores-Hernández & Alberto Luviano-Juárez & Norma Lozada-Castillo & Octavio Gutiérrez-Frías & César Domínguez & Ignacio Antón, 2021. "Optimal Strategy for the Improvement of the Overall Performance of Dual-Axis Solar Tracking Systems," Energies, MDPI, vol. 14(22), pages 1-24, November.
    2. Azam, Md Sadequl & Bhattacharjee, Atish & Hassan, Mahedi & Rahaman, Mashudur & Aziz, Shahin & Ali Shaikh, Md Aftab & Islam, Md Saidul, 2024. "Performance enhancement of solar PV system introducing semi-continuous tracking algorithm based solar tracker," Energy, Elsevier, vol. 289(C).
    3. Hameedullah Zaheb & Habibullah Amiry & Mikaeel Ahmadi & Habibullah Fedayi & Sajida Amiry & Atsushi Yona, 2023. "Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    2. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    3. Zihan Yang & Zhiquan Xiao, 2023. "A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology," Energies, MDPI, vol. 16(23), pages 1-31, November.
    4. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    5. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    6. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    7. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    8. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Goharian, Ali & Daneshjoo, Khosro & Shaeri, Jalil & Mahdavinejad, Mohammadjavad & Yeganeh, Mansour, 2023. "A designerly approach to daylight efficiency of central light-well; combining manual with NSGA-II algorithm optimization," Energy, Elsevier, vol. 276(C).
    10. Barbón, A. & Fernández-Rubiera, J.A. & Martínez-Valledor, L. & Pérez-Fernández, A. & Bayón, L., 2021. "Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements," Applied Energy, Elsevier, vol. 285(C).
    11. Mirzaei, Mohsen & Mohiabadi, Mostafa Zamani, 2018. "Comparative analysis of energy yield of different tracking modes of PV systems in semiarid climate conditions: The case of Iran," Renewable Energy, Elsevier, vol. 119(C), pages 400-409.
    12. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    13. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    14. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    15. Ahmad, Naseer & Sheikh, Anwar K. & Gandhidasan, P. & Elshafie, Moustafa, 2015. "Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 433-447.
    16. Dragos Machidon & Marcel Istrate, 2023. "Tilt Angle Adjustment for Incident Solar Energy Increase: A Case Study for Europe," Sustainability, MDPI, vol. 15(8), pages 1-12, April.
    17. Carlos Morón & Daniel Ferrández & Pablo Saiz & Gabriela Vega & Jorge Pablo Díaz, 2017. "New Prototype of Photovoltaic Solar Tracker Based on Arduino," Energies, MDPI, vol. 10(9), pages 1-13, August.
    18. Hameedullah Zaheb & Habibullah Amiry & Mikaeel Ahmadi & Habibullah Fedayi & Sajida Amiry & Atsushi Yona, 2023. "Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    19. Seme, Sebastijan & Srpčič, Gregor & Kavšek, Domen & Božičnik, Stane & Letnik, Tomislav & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2017. "Dual-axis photovoltaic tracking system – Design and experimental investigation," Energy, Elsevier, vol. 139(C), pages 1267-1274.
    20. Sergio Isai Palomino-Resendiz & Norma Beatriz Lozada-Castillo & Diego Alonso Flores-Hernández & Oscar Octavio Gutiérrez-Frías & Alberto Luviano-Juárez, 2021. "Adaptive Active Disturbance Rejection Control of Solar Tracking Systems with Partially Known Model," Mathematics, MDPI, vol. 9(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2547-:d:359441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.