IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1298-d110360.html
   My bibliography  Save this article

New Prototype of Photovoltaic Solar Tracker Based on Arduino

Author

Listed:
  • Carlos Morón

    (Departamento de Tecnología de la Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Daniel Ferrández

    (Departamento de Tecnología de la Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Pablo Saiz

    (Departamento de Construcciones Arquitectónicas y su Control, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Gabriela Vega

    (Departamento de Tecnología de la Edificación, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Jorge Pablo Díaz

    (Ciclo de Eficiencia Energética y Energía Solar Térmica, Institución Profesional Salesiana, Salesianos Carabanchel, 28044 Madrid, Spain)

Abstract

The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.

Suggested Citation

  • Carlos Morón & Daniel Ferrández & Pablo Saiz & Gabriela Vega & Jorge Pablo Díaz, 2017. "New Prototype of Photovoltaic Solar Tracker Based on Arduino," Energies, MDPI, vol. 10(9), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1298-:d:110360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sidek, M.H.M. & Azis, N. & Hasan, W.Z.W. & Ab Kadir, M.Z.A. & Shafie, S. & Radzi, M.A.M., 2017. "Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control," Energy, Elsevier, vol. 124(C), pages 160-170.
    2. Lo, Chin Kim & Lim, Yun Seng & Rahman, Faidz Abd, 2015. "New integrated simulation tool for the optimum design of bifacial solar panel with reflectors on a specific site," Renewable Energy, Elsevier, vol. 81(C), pages 293-307.
    3. Gad, H.E. & Gad, Hisham E., 2015. "Development of a new temperature data acquisition system for solar energy applications," Renewable Energy, Elsevier, vol. 74(C), pages 337-343.
    4. Beltagy, Hani & Semmar, Djaffar & Lehaut, Christophe & Said, Noureddine, 2017. "Theoretical and experimental performance analysis of a Fresnel type solar concentrator," Renewable Energy, Elsevier, vol. 101(C), pages 782-793.
    5. Fathabadi, Hassan, 2016. "Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 485-494.
    6. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cătălin Alexandru, 2021. "Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform," Energies, MDPI, vol. 14(3), pages 1-30, January.
    2. Carlos Morón & Jorge Pablo Diaz & Daniel Ferrández & Pablo Saiz, 2018. "Design, Development and Implementation of a Weather Station Prototype for Renewable Energy Systems," Energies, MDPI, vol. 11(9), pages 1-13, August.
    3. Yu Zou & Ka Wai Eric Cheng, 2019. "Design and Control of a Permanent Magnet RotLin Motor for New Foldable Photovoltaic Units," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Diego A. Flores-Hernández & Alberto Luviano-Juárez & Norma Lozada-Castillo & Octavio Gutiérrez-Frías & César Domínguez & Ignacio Antón, 2021. "Optimal Strategy for the Improvement of the Overall Performance of Dual-Axis Solar Tracking Systems," Energies, MDPI, vol. 14(22), pages 1-24, November.
    5. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    2. Barbón, A. & Fernández-Rubiera, J.A. & Martínez-Valledor, L. & Pérez-Fernández, A. & Bayón, L., 2021. "Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements," Applied Energy, Elsevier, vol. 285(C).
    3. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    4. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    5. Moon Keun Kim & Khalid Osman Abdulkadir & Jiying Liu & Joon-Ho Choi & Huiqing Wen, 2021. "Optimal Design Strategy of a Solar Reflector Combining Photovoltaic Panels to Improve Electricity Output: A Case Study in Calgary, Canada," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    6. Salgado-Conrado, Lizbeth, 2018. "A review on sun position sensors used in solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2128-2146.
    7. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    8. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    9. Diego A. Flores-Hernández & Alberto Luviano-Juárez & Norma Lozada-Castillo & Octavio Gutiérrez-Frías & César Domínguez & Ignacio Antón, 2021. "Optimal Strategy for the Improvement of the Overall Performance of Dual-Axis Solar Tracking Systems," Energies, MDPI, vol. 14(22), pages 1-24, November.
    10. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    11. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    12. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    13. Carlo Renno & Michele De Giacomo, 2014. "Dynamic Simulation of a CPV/T System Using the Finite Element Method," Energies, MDPI, vol. 7(11), pages 1-20, November.
    14. Chin, C.S. & Babu, A. & McBride, W., 2011. "Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink," Renewable Energy, Elsevier, vol. 36(11), pages 3075-3090.
    15. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    16. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    17. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    18. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    19. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    20. Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1298-:d:110360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.