IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2606-d548056.html
   My bibliography  Save this article

Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method

Author

Listed:
  • Marko Merdžan

    (Electromechanics and Power Electronics Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands)

Abstract

This paper presents a method for the performance analysis of high-speed electric machines supplied with pulse-width modulated voltage source inverters by utilizing a fast analytical model. By applying a strict mathematical procedure, effective expressions for the calculation of rotor eddy current losses and electromagnetic torque are derived. Results obtained by the approach suggested in this study are verified by the finite element model, and it is shown that the proposed method is superior in comparison to the finite element method in terms of computation time. The proposed method enables fast parameter variation analysis, which is demonstrated by changing the inverter switching frequency and electric conductivity of the rotor and analyzing the effects of these changes on rotor eddy current losses. The presented work separately models effects of the permanent magnet and pulse-width modulated stator currents, making it suitable for the analysis of both high-speed permanent magnet machines and high-speed induction machines.

Suggested Citation

  • Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2606-:d:548056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan-Cristian Popa & Nicolae-Florin Jurca & Razvan Alexandru Inte & Nicholas Hrusch & Jeff Hemphill & Codrin G. Cantemir, 2020. "Zero-Airgap Induction Motor Used to Drive a Transmission Oil Pump," Energies, MDPI, vol. 13(17), pages 1-17, August.
    2. Pedro P. C. Bhagubai & João G. Sarrico & João F. P. Fernandes & P. J. Costa Branco, 2020. "Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle," Energies, MDPI, vol. 13(10), pages 1-24, May.
    3. Alessandro Acquaviva & Stefan Skoog & Emma Grunditz & Torbjörn Thiringer, 2020. "Electromagnetic and Calorimetric Validation of a Direct Oil Cooled Tooth Coil Winding PM Machine for Traction Application," Energies, MDPI, vol. 13(13), pages 1-20, June.
    4. Florin Pop-Pîgleşan & Adrian-Cornel Pop & Claudia Marțiş, 2021. "Synchronous Reluctance Machines for Automotive Cooling Fan Systems: Numerical and Experimental Study of Different Slot-Pole Combinations and Winding Types," Energies, MDPI, vol. 14(2), pages 1-28, January.
    5. Robert Lehmann & Arthur Petuchow & Matthias Moullion & Moritz Künzler & Christian Windel & Frank Gauterin, 2020. "Fluid Choice Based on Thermal Model and Performance Testing for Direct Cooled Electric Drive," Energies, MDPI, vol. 13(22), pages 1-13, November.
    6. Dong-Kyu Lee & Jong-Suk Ro, 2020. "Analysis and Design of a High-Performance Traction Motor for Heavy-Duty Vehicles," Energies, MDPI, vol. 13(12), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    2. Yacine Amara, 2023. "Design, Modeling, and Control of Rotating and Linear Electric Machines for Automotive Applications," Energies, MDPI, vol. 16(15), pages 1-3, August.
    3. Pedro P. C. Bhagubai & Luís F. D. Bucho & João F. P. Fernandes & P. J. Costa Branco, 2022. "Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core," Energies, MDPI, vol. 15(8), pages 1-21, April.
    4. Akihisa Hattori & Toshihiko Noguchi & Kazuhiro Murakami, 2022. "Mathematical Model Derivation and Experimental Verification of Novel Consequent-Pole Adjustable Speed PM Motor," Energies, MDPI, vol. 15(17), pages 1-25, August.
    5. Lukáš Veg & Jan Kaska & Martin Skalický & Roman Pechánek, 2021. "A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications," Energies, MDPI, vol. 14(9), pages 1-16, April.
    6. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    7. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    8. Dmytro Konovalov & Ignat Tolstorebrov & Trygve Magne Eikevik & Halina Kobalava & Mykola Radchenko & Armin Hafner & Andrii Radchenko, 2023. "Recent Developments in Cooling Systems and Cooling Management for Electric Motors," Energies, MDPI, vol. 16(19), pages 1-31, October.
    9. Song, Zaixin & Liu, Chunhua, 2022. "Energy efficient design and implementation of electric machines in air transport propulsion system," Applied Energy, Elsevier, vol. 322(C).
    10. Ali Ozdil & Yunus Uzun, 2023. "Design and Comprehensive Analyzes of a Highly Efficient TLA-Type Synchronous Reluctance Machine including the Effects of Conductor per Slot and Wire Size," Energies, MDPI, vol. 16(2), pages 1-17, January.
    11. Jiahui Huang & Weinong Fu & Shuangxia Niu & Xing Zhao & Yanding Bi & Zhenyang Qiao, 2022. "A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines," Energies, MDPI, vol. 15(24), pages 1-14, December.
    12. Junjie Zhao & Bin Zhang & Xiaoli Fu & Shenglin Yan, 2021. "Numerical Study on the Influence of Vortex Generator Arrangement on Heat Transfer Enhancement of Oil-Cooled Motor," Energies, MDPI, vol. 14(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2606-:d:548056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.