IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i11p2351-2358.html
   My bibliography  Save this article

Optimizing CO2 avoided cost by means of repowering

Author

Listed:
  • Escosa, Jesús M.
  • Romeo, Luis M.

Abstract

Repowering fossil fuel power plants by means of gas turbines has been traditionally considered to increase power output and reduce NOx and SO2 emissions both at low cost and short outage periods. At present, reduction in CO2 emissions represents an additional advantage of repowering due to partial fuel shift and overall efficiency increase. This is especially important in existing installations with a CO2 reduction mandatory that should be carried out in a short time and in a cost-effective manner. Feedwater and parallel repowering schemes have been analysed using thermodynamic, environmental and economic simulations. The objective is not only to evaluate the cost of electricity and the efficiency increase of the overall system, but calculate and minimize the cost of CO2 avoided as a function of gas turbine power output. It seems that integration of larger gas turbines reduces the overall CO2 emissions, but there is a compromise between CO2 reduction due to fuel shift and a optimum integration of waste heat into the power plant to minimize the CO2 avoided costs. Results highlight the repowering as a suitable technology to reduce 10-30% of CO2 emissions in existing power plants with cost well below 20Â [euro]/tCO2. It could help to control emissions up to the carbon capture technologies commercial development.

Suggested Citation

  • Escosa, Jesús M. & Romeo, Luis M., 2009. "Optimizing CO2 avoided cost by means of repowering," Applied Energy, Elsevier, vol. 86(11), pages 2351-2358, November.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2351-2358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00072-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carapellucci, Roberto & Giordano, Lorena, 2015. "Upgrading existing coal-fired power plants through heavy-duty and aeroderivative gas turbines," Applied Energy, Elsevier, vol. 156(C), pages 86-98.
    2. Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2010. "Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission," Energy, Elsevier, vol. 35(8), pages 3230-3238.
    3. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    4. Carapellucci, Roberto & Giordano, Lorena, 2019. "Upgrading existing gas-steam combined cycle power plants through steam injection and methane steam reforming," Energy, Elsevier, vol. 173(C), pages 229-243.
    5. Mehrpanahi, A. & Nikbakht Naserabad, S. & Ahmadi, G., 2019. "Multi-objective linear regression based optimization of full repowering a single pressure steam power plant," Energy, Elsevier, vol. 179(C), pages 1017-1035.
    6. Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Design and analysis of heat exchanger networks for integrated Ca-looping systems," Applied Energy, Elsevier, vol. 111(C), pages 690-700.
    7. Espatolero, Sergio & Cortés, Cristóbal & Romeo, Luis M., 2010. "Optimization of boiler cold-end and integration with the steam cycle in supercritical units," Applied Energy, Elsevier, vol. 87(5), pages 1651-1660, May.
    8. João R. B. Paiva & Alana S. Magalhães & Pedro H. F. Moraes & Júnio S. Bulhões & Wesley P. Calixto, 2021. "Stability Metric Based on Sensitivity Analysis Applied to Electrical Repowering System," Energies, MDPI, vol. 14(22), pages 1-21, November.
    9. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    10. Tolón-Becerra, A. & Lastra-Bravo, X. & Bienvenido-Bárcena, F., 2010. "Methodology proposal for territorial distribution of greenhouse gas reduction percentages in the EU according to the strategic energy policy goal," Applied Energy, Elsevier, vol. 87(11), pages 3552-3564, November.
    11. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    12. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Marcin Szega & Tomasz Popławski, 2020. "Power and Frequency Control in the National Power System of the 370 MW Coal Fired Unit Superstructured with a Gas Turbine," Energies, MDPI, vol. 13(10), pages 1-35, May.
    13. Anderson, Jeffrey J. & Rode, David & Zhai, Haibo & Fischbeck, Paul, 2021. "Transitioning to a carbon-constrained world: Reductions in coal-fired power plant emissions through unit-specific, least-cost mitigation frontiers," Applied Energy, Elsevier, vol. 288(C).
    14. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2018. "Technical and environmental analysis of repowering the existing CHP system in a petrochemical plant: A case study," Energy, Elsevier, vol. 159(C), pages 937-949.
    15. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:11:p:2351-2358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.