IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2422-d357125.html
   My bibliography  Save this article

Development and Verification of a Simulation Model for 120 kW Class Electric AWD (All-Wheel-Drive) Tractor during Driving Operation

Author

Listed:
  • Seung-Yun Baek

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea
    Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea)

  • Yeon-Soo Kim

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea
    Convergence Agricultural Machinery Group, Korea Institute of Industrial Technology (KITECH), Gimje 54325, Korea)

  • Wan-Soo Kim

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea
    Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea)

  • Seung-Min Baek

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea
    Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea)

  • Yong-Joo Kim

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea
    Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea)

Abstract

This study was conducted to develop a simulation model of a 120 kW class electric all-wheel-drive (AWD) tractor and verify the model by comparing the measurement and simulation results. The platform was developed based on the power transmission system, including batteries, electric motors, reducers, wheels, and a charging system composed of a generator, an AC/DC converter, and chargers on each axle. The data measurement system was installed on the platform, consisting of an analog (current) and a digital part (rotational speed of electric motors and voltage and SOC (state of charge) level of batteries) by a CAN (controller area network) bus. The axle torque was calculated using the current and torque curves of the electric motor. The simulation model was developed by 1D simulation software and used axle torque and vehicle velocity data to create the simulation conditions. To compare the results of the simulation, a driving test using the platform was performed at a ground speed of 10 km/h in off- and on-road conditions. The similarities between the results were analyzed using statistical software and we found no significant difference in axle torque data. The simulation model was considered to be highly reliable given the change rate and average value of the SOC level. Using the simulation model, the workable time of driving operation was estimated to be about six hours and the workable time of plow tillage was estimated to be about 2.4 h. The results showed that the capacity of the battery is slightly low for plow tillage. However, in future studies, the electric AWD tractor performance could be improved through battery optimization through simulation under various conditions.

Suggested Citation

  • Seung-Yun Baek & Yeon-Soo Kim & Wan-Soo Kim & Seung-Min Baek & Yong-Joo Kim, 2020. "Development and Verification of a Simulation Model for 120 kW Class Electric AWD (All-Wheel-Drive) Tractor during Driving Operation," Energies, MDPI, vol. 13(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2422-:d:357125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    2. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huajun Chen & Meng Wang & Xiangdong Ni & Wenqing Cai & Chunfa Zhong & Haoyun Ye & Yongqiang Zhao & Wenlong Pan & Yuangang Lin, 2023. "Design of Hydrostatic Power Shift Compound Drive System for Cotton Picker Experiment," Agriculture, MDPI, vol. 13(8), pages 1-19, August.
    2. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    3. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    4. Francesco Mocera & Valerio Martini & Aurelio Somà, 2022. "Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors," Energies, MDPI, vol. 15(5), pages 1-22, March.
    5. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lennart Petersen & Florin Iov & German Claudio Tarnowski & Vahan Gevorgian & Przemyslaw Koralewicz & Daniel-Ioan Stroe, 2019. "Validating Performance Models for Hybrid Power Plant Control Assessment," Energies, MDPI, vol. 12(22), pages 1-26, November.
    2. Ehab Issa El-Sayed & Salah K. ElSayed & Mohammad Alsharef, 2024. "Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    3. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    5. Donghun Wang & Jihwan Hwang & Jonghyun Lee & Minchan Kim & Insoo Lee, 2023. "Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    8. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    9. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    10. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    11. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    12. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    13. Duo Zhang & Guohai Liu & Wenxiang Zhao & Penghu Miao & Yan Jiang & Huawei Zhou, 2014. "A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle," Energies, MDPI, vol. 7(7), pages 1-15, July.
    14. Jingang Guo & Xiaoping Jian & Guangyu Lin, 2014. "Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller," Energies, MDPI, vol. 7(10), pages 1-18, October.
    15. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    16. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    17. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    18. Yi, Yahui & Xia, Chengyu & Shi, Lei & Meng, Leifeng & Chi, Qifu & Qian, Liqin & Ma, Tiancai & Chen, Siqi, 2024. "Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics," Energy, Elsevier, vol. 292(C).
    19. Bin-Hao Chen & Chen-Hsiang Hsieh & Li-Tao Teng & Chien-Chung Huang, 2023. "Experimental Study on Temperature Sensitivity of the State of Charge of Aluminum Battery Storage System," Energies, MDPI, vol. 16(11), pages 1-30, May.
    20. Yang, Bowen & Wang, Dafang & Yu, Beike & Wang, Facheng & Chen, Shiqin & Sun, Xu & Dong, Haosong, 2024. "Research on online passive electrochemical impedance spectroscopy and its outlook in battery management," Applied Energy, Elsevier, vol. 363(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2422-:d:357125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.