IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8537-8561d54064.html
   My bibliography  Save this article

Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method

Author

Listed:
  • Jinhyun Park

    (School of Mechanical Engineering Sungkyunkwan University, Suwon, Gyeonggi 440-746, Korea)

  • Houn Jeong

    (School of Mechanical Engineering Sungkyunkwan University, Suwon, Gyeonggi 440-746, Korea)

  • In Gyu Jang

    (Advanced technology, Development I Mando Global R&D Center, Seongnam, Gyeonggi 463-400, Korea)

  • Sung-Ho Hwang

    (School of Mechanical Engineering Sungkyunkwan University, Suwon, Gyeonggi 440-746, Korea)

Abstract

The in-wheel electric vehicle is expected to be a popular next-generation vehicle because an in-wheel system can simplify the powertrain and improve driving performance. In addition, it also has an advantage in that it maximizes driving efficiency through independent torque control considering the motor efficiency. However, there is an instability problem if only the driving torque is controlled in consideration of only the motor efficiency. In this paper, integrated torque distribution strategies are proposed to overcome these problems. The control algorithm consists of various strategies for optimizing driving efficiency, satisfying driver demands, and considering tire slip and vehicle cornering. Fuzzy logic is used to determine the appropriate timing of intervention for each distribution strategy. A performance simulator for in-wheel electric vehicles was developed by using MATLAB/Simulink and CarSim to validate the control strategies. From simulation results under complex driving conditions, the proposed algorithm was verified to improve both the driving stability and fuel economy of the in-wheel vehicle.

Suggested Citation

  • Jinhyun Park & Houn Jeong & In Gyu Jang & Sung-Ho Hwang, 2015. "Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method," Energies, MDPI, vol. 8(8), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8537-8561:d:54064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoqing Xu & Weimin Li & Kun Xu & Zhibin Song, 2011. "An Intelligent Regenerative Braking Strategy for Electric Vehicles," Energies, MDPI, vol. 4(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhyun Park & In Gyu Jang & Sung-Ho Hwang, 2018. "Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method: Driving Stability and Efficiency," Energies, MDPI, vol. 11(12), pages 1-22, December.
    2. Jamal Abd Ali & Mahammad A Hannan & Azah Mohamed, 2015. "A Novel Quantum-Behaved Lightning Search Algorithm Approach to Improve the Fuzzy Logic Speed Controller for an Induction Motor Drive," Energies, MDPI, vol. 8(11), pages 1-25, November.
    3. Liqiang Jin & Duanyang Tian & Qixiang Zhang & Jingjian Wang, 2020. "Optimal Torque Distribution Control of Multi-Axle Electric Vehicles with In-wheel Motors Based on DDPG Algorithm," Energies, MDPI, vol. 13(6), pages 1-19, March.
    4. Wanke Cao & Helin Liu & Cheng Lin & Yuhua Chang & Zhiyin Liu & Antoni Szumanowski, 2017. "Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion," Energies, MDPI, vol. 10(10), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    3. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    4. Duo Zhang & Guohai Liu & Wenxiang Zhao & Penghu Miao & Yan Jiang & Huawei Zhou, 2014. "A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle," Energies, MDPI, vol. 7(7), pages 1-15, July.
    5. Jingang Guo & Xiaoping Jian & Guangyu Lin, 2014. "Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller," Energies, MDPI, vol. 7(10), pages 1-18, October.
    6. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    7. Jinhyun Park & In Gyu Jang & Sung-Ho Hwang, 2018. "Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method: Driving Stability and Efficiency," Energies, MDPI, vol. 11(12), pages 1-22, December.
    8. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    9. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    10. Seung-Yun Baek & Yeon-Soo Kim & Wan-Soo Kim & Seung-Min Baek & Yong-Joo Kim, 2020. "Development and Verification of a Simulation Model for 120 kW Class Electric AWD (All-Wheel-Drive) Tractor during Driving Operation," Energies, MDPI, vol. 13(10), pages 1-15, May.
    11. Xiang Liu & Min Xu & Mian Li, 2015. "New TA Index-Based Rollover Prevention System for Electric Vehicles," Energies, MDPI, vol. 8(3), pages 1-24, March.
    12. Yang Yang & Xiaolong He & Yi Zhang & Datong Qin, 2018. "Regenerative Braking Compensatory Control Strategy Considering CVT Power Loss for Hybrid Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-15, February.
    13. Branimir Škugor & Joško Petrić, 2018. "Optimization of Control Variables and Design of Management Strategy for Hybrid Hydraulic Vehicle," Energies, MDPI, vol. 11(10), pages 1-24, October.
    14. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Giovanni Tesoriere, 2021. "The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet," Energies, MDPI, vol. 14(4), pages 1-21, February.
    15. Wu, Fuliang & Bektaş, Tolga & Dong, Ming & Ye, Hongbo & Zhang, Dali, 2021. "Optimal driving for vehicle fuel economy under traffic speed uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 175-206.
    16. Serrano, José Ramón & García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago, 2021. "High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions," Applied Energy, Elsevier, vol. 282(PA).
    17. He, Hongwen & Wang, Chen & Jia, Hui & Cui, Xing, 2020. "An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    18. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    19. Ilya Kulikov, 2019. "Model Analysis of Electrically Driven Vehicles by Means of Unknown Input Observers," Energies, MDPI, vol. 12(12), pages 1-17, June.
    20. Emilia M. Szumska & Rafał Jurecki, 2022. "The Analysis of Energy Recovered during the Braking of an Electric Vehicle in Different Driving Conditions," Energies, MDPI, vol. 15(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8537-8561:d:54064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.