IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p128-d302146.html
   My bibliography  Save this article

Effect of Moisture on Gas Emissions from Stored Woody Biomass

Author

Listed:
  • Xiao He

    (Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Anthony K. Lau

    (Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada)

  • Shahab Sokhansanj

    (Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada)

Abstract

Biomass materials have been increasingly used due to their renewable nature. The problems occurring during the storage of fresh woody materials include gas emissions and dry matter losses as a result of degradation. The objective of this study was to investigate and quantify the effect of moisture content on gas emissions from stored wood chips. Experiments were conducted under non-aerobic and aerobic conditions using fresh Western Red Cedar (WRC) chips with different initial moisture contents over a range of temperatures. The peak CO 2 emission factor of 2.9 g/kg dry matter (DM) was observed from high moisture chips at 20 °C under non-aerobic conditions after two-month storage, which was an order of magnitude greater than that from low moisture chips. In the case of volatile organic compounds, a range of compounds were detected from all tests. The concentration of VOCs was found to be positively correlated with moisture content. Gas emissions from the aerobic reactors exhibited similar trends as non-aerobic reactors with respect to the effect of moisture content, although higher values were observed under aerobic conditions. Slight reduction of dry mass from all tests at the end of storage indicated the decay-resistance characteristics of WRC.

Suggested Citation

  • Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:128-:d:302146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    2. Jämsén, M. & Agar, D. & Alakoski, E. & Tampio, E. & Wihersaari, M., 2015. "Measurement methodology for greenhouse gas emissions from storage of forest chips–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1617-1623.
    3. Alakoski, Esa & Jämsén, Miia & Agar, David & Tampio, Elina & Wihersaari, Margareta, 2016. "From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 376-383.
    4. Jaya Shankar Tumuluru & C. Jim Lim & Xiaotao T. Bi & Xingya Kuang & Staffan Melin & Fahimeh Yazdanpanah & Shahab Sokhansanj, 2015. "Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass," Energies, MDPI, vol. 8(3), pages 1-15, March.
    5. Casal, M.D. & Gil, M.V. & Pevida, C. & Rubiera, F. & Pis, J.J., 2010. "Influence of storage time on the quality and combustion behaviour of pine woodchips," Energy, Elsevier, vol. 35(7), pages 3066-3071.
    6. Anerud, Erik & Jirjis, Raida & Larsson, Gunnar & Eliasson, Lars, 2018. "Fuel quality of stored wood chips – Influence of semi-permeable covering material," Applied Energy, Elsevier, vol. 231(C), pages 628-634.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Kamalakanta & Bilek, E.M. (Ted) & Mani, Sudhagar, 2018. "Techno-economic and environmental assessments of storing woodchips and pellets for bioenergy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 27-39.
    2. José Ignacio Arranz & María Teresa Miranda & Irene Montero & Sergio Nogales & Francisco José Sepúlveda, 2019. "Influence Factors on Carbon Monoxide Accumulation in Biomass Pellet Storage," Energies, MDPI, vol. 12(12), pages 1-12, June.
    3. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    4. Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    6. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    7. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Yoonah Jeong & Jae-Sung Kim & Ye-Eun Lee & Dong-Chul Shin & Kwang-Ho Ahn & Jinhong Jung & Kyeong-Ho Kim & Min-Jong Ku & Seung-Mo Kim & Chung-Hwan Jeon & I-Tae Kim, 2023. "Investigation and Optimization of Co-Combustion Efficiency of Food Waste Biochar and Coal," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
    9. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    12. Everard, Colm D. & Finnan, John & McDonnell, Kevin P. & Schmidt, Martin, 2013. "Evaluation of self-heating in Miscanthus x giganteus energy crop clamps and the implications for harvesting time," Energy, Elsevier, vol. 58(C), pages 350-356.
    13. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    14. Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
    15. Paula Jylhä & Saleh Ahmadinia & Juha Hyvönen & Annamari (Ari) Laurén & Robert Prinz & Lauri Sikanen & Johanna Routa, 2022. "Self-Heating, Drying, and Dry Matter Losses of Stockpiled Stemwood Chips: The Effect of Ventilation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    16. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    17. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    18. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    19. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    20. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:128-:d:302146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.