IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1507-d224752.html
   My bibliography  Save this article

Performance of the Stator Winding Fault Diagnosis in Sensorless Induction Motor Drive

Author

Listed:
  • Grzegorz Tarchała

    (Department of Electrical Drives and Measurements, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

  • Marcin Wolkiewicz

    (Department of Electrical Drives and Measurements, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

This paper deals with the diagnosis of stator winding inter-turn faults for an induction motor drive operating without a speed sensor in a speed-sensorless mode. The rotor direct field oriented control structure (DFOC) was applied, its reference current and voltage component values were analyzed, and their selected harmonics were applied as effective fault indicators. To ensure robust speed estimation, a sliding mode model reference adaptive system (SM-MRAS) estimator was selected. The influence of load torque, reference speed, proportional-integral (PI) controller parameters, and short-circuit current on fault diagnosis and speed estimation performance was verified. Experimental test results obtained for a 3 kW induction motor drive are included.

Suggested Citation

  • Grzegorz Tarchała & Marcin Wolkiewicz, 2019. "Performance of the Stator Winding Fault Diagnosis in Sensorless Induction Motor Drive," Energies, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1507-:d:224752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takwa Sellami & Hanen Berriri & Sana Jelassi & A Moumen Darcherif & M Faouzi Mimouni, 2017. "Short-Circuit Fault Tolerant Control of a Wind Turbine Driven Induction Generator Based on Sliding Mode Observers," Energies, MDPI, vol. 10(10), pages 1-21, October.
    2. Luqman Maraaba & Zakariya Al-Hamouz & Mohammad Abido, 2018. "An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors," Energies, MDPI, vol. 11(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przemyslaw Pietrzak & Marcin Wolkiewicz, 2021. "Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents," Energies, MDPI, vol. 14(6), pages 1-23, March.
    2. Minghui Wang & Yongxiang Xu & Jibin Zou, 2019. "Sliding-Mode-Observer-Based Open-Switch Diagnostic Method for Permanent Magnet Synchronous Motor Drive Connected with LC Filter," Energies, MDPI, vol. 12(17), pages 1-19, August.
    3. Zorig, Assam & Hedayati Kia, Shahin & Chouder, Aissa & Rabhi, Abdelhamid, 2022. "A comparative study for stator winding inter-turn short-circuit fault detection based on harmonic analysis of induction machine signatures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 273-288.
    4. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    5. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Pietrowski & Konrad Górny, 2020. "Analysis of Torque Ripples of an Induction Motor Taking into Account a Inter-Turn Short-Circuit in a Stator Winding," Energies, MDPI, vol. 13(14), pages 1-19, July.
    2. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.
    3. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    4. Lien-Kai Chang & Shun-Hong Wang & Mi-Ching Tsai, 2020. "Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering," Energies, MDPI, vol. 13(17), pages 1-12, August.
    5. Zorig, Assam & Hedayati Kia, Shahin & Chouder, Aissa & Rabhi, Abdelhamid, 2022. "A comparative study for stator winding inter-turn short-circuit fault detection based on harmonic analysis of induction machine signatures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 273-288.
    6. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    7. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    8. Luo Wang & Yonggang Li & Junqing Li, 2018. "Diagnosis of Inter-Turn Short Circuit of Synchronous Generator Rotor Winding Based on Volterra Kernel Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    9. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Carlos López-Torres & Antoni Garcia, 2019. "Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 12(14), pages 1-15, July.
    10. Yun-Tao Shi & Xiang Xiang & Li Wang & Yuan Zhang & De-Hui Sun, 2018. "Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System," Energies, MDPI, vol. 11(1), pages 1-20, January.
    11. Qinyue Zhu & Zhaoyang Li & Xitang Tan & Dabo Xie & Wei Dai, 2019. "Sensors Fault Diagnosis and Active Fault-Tolerant Control for PMSM Drive Systems Based on a Composite Sliding Mode Observer," Energies, MDPI, vol. 12(9), pages 1-20, May.
    12. Gopu Venugopal & Arun Kumar Udayakumar & Adhavan Balashanmugham & Mohamad Abou Houran & Faisal Alsaif & Rajvikram Madurai Elavarasan & Kannadasan Raju & Mohammed H. Alsharif, 2023. "Fault Identification and Classification of Asynchronous Motor Drive Using Optimization Approach with Improved Reliability," Energies, MDPI, vol. 16(6), pages 1-25, March.
    13. Maciej Skowron & Marcin Wolkiewicz & Teresa Orlowska-Kowalska & Czeslaw T. Kowalski, 2019. "Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors," Energies, MDPI, vol. 12(12), pages 1-20, June.
    14. Koldo Redondo & José Julio Gutiérrez & Izaskun Azcarate & Purificación Saiz & Luis Alberto Leturiondo & Sofía Ruiz de Gauna, 2019. "Experimental Study of the Summation of Flicker Caused by Wind Turbines," Energies, MDPI, vol. 12(12), pages 1-13, June.
    15. Milan Oravec & Pavol Lipovský & Miroslav Šmelko & Pavel Adamčík & Mirosław Witoś & Jerzy Kwaśniewski, 2021. "Low-Frequency Magnetic Fields in Diagnostics of Low-Speed Electrical and Mechanical Systems," Sustainability, MDPI, vol. 13(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1507-:d:224752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.