IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p193-d126758.html
   My bibliography  Save this article

Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System

Author

Listed:
  • Yun-Tao Shi

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Xiang Xiang

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Li Wang

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Yuan Zhang

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • De-Hui Sun

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

Abstract

Wind energy has been drawing considerable attention in recent years. However, due to the random nature of wind and high failure rate of wind energy conversion systems (WECSs), how to implement fault-tolerant WECS control is becoming a significant issue. This paper addresses the fault-tolerant control problem of a WECS with a probable actuator fault. A new stochastic model predictive control (SMPC) fault-tolerant controller with the Conditional Value at Risk (CVaR) objective function is proposed in this paper. First, the Markov jump linear model is used to describe the WECS dynamics, which are affected by many stochastic factors, like the wind. The Markov jump linear model can precisely model the random WECS properties. Second, the scenario-based SMPC is used as the controller to address the control problem of the WECS. With this controller, all the possible realizations of the disturbance in prediction horizon are enumerated by scenario trees so that an uncertain SMPC problem can be transformed into a deterministic model predictive control (MPC) problem. Finally, the CVaR object function is adopted to improve the fault-tolerant control performance of the SMPC controller. CVaR can provide a balance between the performance and random failure risks of the system. The Min-Max performance index is introduced to compare the fault-tolerant control performance with the proposed controller. The comparison results show that the proposed method has better fault-tolerant control performance.

Suggested Citation

  • Yun-Tao Shi & Xiang Xiang & Li Wang & Yuan Zhang & De-Hui Sun, 2018. "Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System," Energies, MDPI, vol. 11(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:193-:d:126758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    2. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Takwa Sellami & Hanen Berriri & Sana Jelassi & A Moumen Darcherif & M Faouzi Mimouni, 2017. "Short-Circuit Fault Tolerant Control of a Wind Turbine Driven Induction Generator Based on Sliding Mode Observers," Energies, MDPI, vol. 10(10), pages 1-21, October.
    5. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donggil Kim & Dongik Lee, 2019. "Hierarchical Fault-Tolerant Control using Model Predictive Control for Wind Turbine Pitch Actuator Faults," Energies, MDPI, vol. 12(16), pages 1-13, August.
    2. Yun-Tao Shi & Yuan Zhang & Xiang Xiang & Li Wang & Zhen-Wu Lei & De-Hui Sun, 2018. "Stochastic Hybrid Estimator Based Fault Detection and Isolation for Wind Energy Conversion Systems with Unknown Fault Inputs," Energies, MDPI, vol. 11(9), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
    2. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    4. Taras Bodnar & Vilhelm Niklasson & Erik Thors'en, 2022. "Volatility Sensitive Bayesian Estimation of Portfolio VaR and CVaR," Papers 2205.01444, arXiv.org.
    5. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    6. Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Yang, Mo & Chang, Jianing, 2024. "Forecasting the VaR of the crude oil market: A combination of mixed data sampling and extreme value theory," Energy Economics, Elsevier, vol. 133(C).
    7. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    8. Durán Santomil, Pablo & Otero González, Luís & Martorell Cunill, Onofre & Merigó Lindahl, José M., 2018. "Backtesting an equity risk model under Solvency II," Journal of Business Research, Elsevier, vol. 89(C), pages 216-222.
    9. Ilhami KARAHANOGLU, 2020. "The VaR comparison of the fresh investment toolBITCOIN with other conventional investment tools, gold, stock exchange (BIST100) and foreign currencies (EUR/USD VS TRL)," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 11, pages 160-181, December.
    10. Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Wei, Yu & Kong, Mengzhen, 2024. "Does mixed frequency variables help to forecast value at risk in the crude oil market?," Resources Policy, Elsevier, vol. 88(C).
    11. D. Th. Vezeris & C. J. Schinas & Th. S. Kyrgos & V. A. Bizergianidou & I. P. Karkanis, 2020. "Optimization of Backtesting Techniques in Automated High Frequency Trading Systems Using the d-Backtest PS Method," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 975-1054, December.
    12. Murphy, David, 2023. "What can we expect from a good margin model? Observations from whole-distribution tests of risk-based initial margin models," LSE Research Online Documents on Economics 118281, London School of Economics and Political Science, LSE Library.
    13. Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
    14. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
    15. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    16. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    17. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
    18. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    19. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
    20. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:193-:d:126758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.