IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p653-d136276.html
   My bibliography  Save this article

An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors

Author

Listed:
  • Luqman Maraaba

    (Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Zakariya Al-Hamouz

    (Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mohammad Abido

    (Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Induction motors constitute the largest proportion of motors in industry. This type of motor experiences different types of failures, such as broken bars, eccentricity, and inter-turn failure. Stator winding faults account for approximately 36% of these failures. As such, condition monitoring is used to protect motors from sudden breakdowns. This paper proposes the use of neural networks as an efficient diagnostic tool for estimating the percentage of stator winding shorted turns in three-phase induction motors. A MATLAB-based model was developed and simulated under different fault-load combination cases for different sizes of motors. The motor’s developed electromechanical torque was selected as a fault indicator. For the design and training of the neural network, the mean, variance, max, min, and F120 time based on statistical and frequency-related features were found to be very distinct for correlating the captured electromechanical torque with its corresponding percentage of shorted turns. In the training phase of the neural network, five different motors were used and are referred to as seen motors. On the other hand, for testing the efficiency of the developed diagnostic tool, the electromechanical torque under different fault-load combination cases, previously never seen from the first five motors and those of two new motors (referred to as unseen), was used. Testing results revealed accuracy in the range of 88–99%.

Suggested Citation

  • Luqman Maraaba & Zakariya Al-Hamouz & Mohammad Abido, 2018. "An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors," Energies, MDPI, vol. 11(3), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:653-:d:136276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Pietrowski & Konrad Górny, 2020. "Analysis of Torque Ripples of an Induction Motor Taking into Account a Inter-Turn Short-Circuit in a Stator Winding," Energies, MDPI, vol. 13(14), pages 1-19, July.
    2. Gopu Venugopal & Arun Kumar Udayakumar & Adhavan Balashanmugham & Mohamad Abou Houran & Faisal Alsaif & Rajvikram Madurai Elavarasan & Kannadasan Raju & Mohammed H. Alsharif, 2023. "Fault Identification and Classification of Asynchronous Motor Drive Using Optimization Approach with Improved Reliability," Energies, MDPI, vol. 16(6), pages 1-25, March.
    3. Maciej Skowron & Marcin Wolkiewicz & Teresa Orlowska-Kowalska & Czeslaw T. Kowalski, 2019. "Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    5. Milan Oravec & Pavol Lipovský & Miroslav Šmelko & Pavel Adamčík & Mirosław Witoś & Jerzy Kwaśniewski, 2021. "Low-Frequency Magnetic Fields in Diagnostics of Low-Speed Electrical and Mechanical Systems," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    6. Zorig, Assam & Hedayati Kia, Shahin & Chouder, Aissa & Rabhi, Abdelhamid, 2022. "A comparative study for stator winding inter-turn short-circuit fault detection based on harmonic analysis of induction machine signatures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 273-288.
    7. Lien-Kai Chang & Shun-Hong Wang & Mi-Ching Tsai, 2020. "Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering," Energies, MDPI, vol. 13(17), pages 1-12, August.
    8. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    9. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.
    10. Luo Wang & Yonggang Li & Junqing Li, 2018. "Diagnosis of Inter-Turn Short Circuit of Synchronous Generator Rotor Winding Based on Volterra Kernel Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    11. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Carlos López-Torres & Antoni Garcia, 2019. "Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 12(14), pages 1-15, July.
    12. Grzegorz Tarchała & Marcin Wolkiewicz, 2019. "Performance of the Stator Winding Fault Diagnosis in Sensorless Induction Motor Drive," Energies, MDPI, vol. 12(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    2. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    3. Yu, Cao & Wang, Haizheng & Yao, Jianxi & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2020. "A dynamic alarm threshold setting method for photovoltaic array and its application," Renewable Energy, Elsevier, vol. 158(C), pages 13-22.
    4. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    5. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    6. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    7. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    8. Sufyan Samara & Emad Natsheh, 2020. "Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    9. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    10. Dimri, Neha & Tiwari, Arvind & Tiwari, G.N., 2019. "Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors," Renewable Energy, Elsevier, vol. 134(C), pages 343-356.
    11. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    12. Mansouri, Majdi & Hajji, Mansour & Trabelsi, Mohamed & Harkat, Mohamed Faouzi & Al-khazraji, Ayman & Livera, Andreas & Nounou, Hazem & Nounou, Mohamed, 2018. "An effective statistical fault detection technique for grid connected photovoltaic systems based on an improved generalized likelihood ratio test," Energy, Elsevier, vol. 159(C), pages 842-856.
    13. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    14. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    15. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    17. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    18. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    19. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    20. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2021. "Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network," Energies, MDPI, vol. 14(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:653-:d:136276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.