IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1630-d517098.html
   My bibliography  Save this article

Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents

Author

Listed:
  • Przemyslaw Pietrzak

    (Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Marcin Wolkiewicz

    (Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

Stator winding faults are one of the most common faults of permanent magnet synchronous motors (PMSMs), and searching for methods to efficiently detect this type of fault and at an early stage of damage is still an ongoing, important topic. This paper deals with the selected methods for detecting stator winding faults (short-circuits) of a permanent magnet synchronous motor, which are based on the analysis of the stator phase current signal. These methods were experimentally verified and their effectiveness was carefully compared. The article presents the results of experimental studies obtained from the spectral analysis of the stator phase current, stator phase current envelope, and the discrete wavelet transform. The original fault indicators (FIs) based on the observation of the symptoms of stator winding fault were distinguished using the aforementioned methods, which clearly show which symptom is most sensitive to the incipient fault of the stator winding of PMSMs.

Suggested Citation

  • Przemyslaw Pietrzak & Marcin Wolkiewicz, 2021. "Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents," Energies, MDPI, vol. 14(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1630-:d:517098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jian & Tounzi, Abdelmounaim & Benabou, Abdelkader & Le Menach, Yvonnick, 2021. "Detection of magnetization loss in a PMSM with Hilbert Huang transform applied to non-invasive search coil voltage," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 184-195.
    2. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    3. Grzegorz Tarchała & Marcin Wolkiewicz, 2019. "Performance of the Stator Winding Fault Diagnosis in Sensorless Induction Motor Drive," Energies, MDPI, vol. 12(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael de Farias Campos & Cesar da Silva Liberato & José de Oliveira & Tiago Jackson May Dezuo & Ademir Nied, 2022. "Dynamic Strategy for Effective Current Reduction in Brushless DC Synchronous Motors Fault Tolerant Operation," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Rodolfo V. Rocha & Renato M. Monaro, 2023. "Algorithm for Fast Detection of Stator Turn Faultsin Variable-Speed Synchronous Generators," Energies, MDPI, vol. 16(5), pages 1-23, March.
    3. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    4. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    5. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josue A. Reyes-Malanche & Francisco J. Villalobos-Pina & Efraın Ramırez-Velasco & Eduardo Cabal-Yepez & Geovanni Hernandez-Gomez & Misael Lopez-Ramirez, 2023. "Short-Circuit Fault Diagnosis on Induction Motors through Electric Current Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    3. Zorig, Assam & Hedayati Kia, Shahin & Chouder, Aissa & Rabhi, Abdelhamid, 2022. "A comparative study for stator winding inter-turn short-circuit fault detection based on harmonic analysis of induction machine signatures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 273-288.
    4. Maciej Skowron & Czeslaw T. Kowalski & Teresa Orlowska-Kowalska, 2022. "Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives," Energies, MDPI, vol. 15(19), pages 1-22, September.
    5. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    6. Federico Gargiulo & Annalisa Liccardo & Rosario Schiano Lo Moriello, 2022. "A Non-Invasive Method Based on AI and Current Measurements for the Detection of Faults in Three-Phase Motors," Energies, MDPI, vol. 15(12), pages 1-19, June.
    7. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    8. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    9. Muhammed Ali Gultekin & Ali Bazzi, 2023. "Review of Fault Detection and Diagnosis Techniques for AC Motor Drives," Energies, MDPI, vol. 16(15), pages 1-22, July.
    10. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    11. Minghui Wang & Yongxiang Xu & Jibin Zou, 2019. "Sliding-Mode-Observer-Based Open-Switch Diagnostic Method for Permanent Magnet Synchronous Motor Drive Connected with LC Filter," Energies, MDPI, vol. 12(17), pages 1-19, August.
    12. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    13. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.
    14. Jianqiang Liu & Hu Tan & Yunming Shi & Yu Ai & Shaoyong Chen & Chenyang Zhang, 2022. "Research on Diagnosis and Prediction Method of Stator Interturn Short-Circuit Fault of Traction Motor," Energies, MDPI, vol. 15(10), pages 1-17, May.
    15. Marco Antonio Rodriguez-Blanco & Victor Golikov & René Osorio-Sánchez & Oleg Samovarov & Gerardo Ortiz-Torres & Rafael Sanchez-Lara & Jose Luis Vazquez-Avila, 2022. "Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations," Energies, MDPI, vol. 15(22), pages 1-19, November.
    16. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    17. Khaled A. Mahafzah & Mohammad A. Obeidat & Ayman M. Mansour & Ali Q. Al-Shetwi & Taha Selim Ustun, 2022. "Artificial-Intelligence-Based Open-Circuit Fault Diagnosis in VSI-Fed PMSMs and a Novel Fault Recovery Method," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    18. Konrad Górny & Piotr Kuwałek & Wojciech Pietrowski, 2021. "Increasing Electric Vehicles Reliability by Non-Invasive Diagnosis of Motor Winding Faults," Energies, MDPI, vol. 14(9), pages 1-14, April.
    19. Mateusz Krzysztofiak & Maciej Skowron & Teresa Orlowska-Kowalska, 2020. "Analysis of the Impact of Stator Inter-Turn Short Circuits on PMSM Drive with Scalar and Vector Control," Energies, MDPI, vol. 14(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1630-:d:517098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.