IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1453-d223488.html
   My bibliography  Save this article

Coal Chemical-Looping with Oxygen Uncoupling (CLOU) Using a Cu-Based Oxygen Carrier Derived from Natural Minerals

Author

Listed:
  • Ping Wang

    (Department of Energy (DOE), National Energy Technology Laboratory (NETL), 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA)

  • Bret Howard

    (Department of Energy (DOE), National Energy Technology Laboratory (NETL), 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA)

  • Nicholas Means

    (Department of Energy (DOE), National Energy Technology Laboratory (NETL), 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA
    Leidos Research Support Team, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA)

  • Dushyant Shekhawat

    (DOE, NETL, 3610 Collins Ferry Road, Morgantown, WV 26507, USA)

  • David Berry

    (DOE, NETL, 3610 Collins Ferry Road, Morgantown, WV 26507, USA)

Abstract

Chemical-looping with oxygen uncoupling (CLOU) is considered a promising technology to burn solid fuels with improved CO 2 capture and has the potential to improve fuel conversion and reaction rates. Cu-based oxygen carriers (Cu-OC) are often used in solid fuel CLOU. This study focused on investigating Cu-OC derived from a natural mineral for solid fuel CLOU because of their potentially lower cost compared to synthetic OCs. Reactivity and recyclability of a natural ore-derived Cu-OC on coal char (Powder River Basin sub-bituminous coal) were studied at 900 °C in Ar and air using TGA-QMS and fixed-bed reactor-QMS for five cycles. Cu-OC was prepared by simply heating chalcopyrite in air. Chalcopyrite is one of the principle copper sulfide ores and one of the primary ores for copper. The prepared Cu-OC had primarily CuO and CuFe 2 O 4 (CuOFe 2 O 3 ) as active compounds based on XRD analysis and an oxygen capacity 3.3% from oxygen uncoupling. The carbon conversion efficiency Xc was 0.94 for reduction at a ratio of Cu-OC to char ϕ = 75 and the product gas was primarily CO 2 with trace O 2 . The reactivities and the rates were similar for five redox cycles. These results indicate that the natural ore-derived material with low cost has potential as a competitive oxygen carrier in solid fuel CLOU based on its reactivity in this study.

Suggested Citation

  • Ping Wang & Bret Howard & Nicholas Means & Dushyant Shekhawat & David Berry, 2019. "Coal Chemical-Looping with Oxygen Uncoupling (CLOU) Using a Cu-Based Oxygen Carrier Derived from Natural Minerals," Energies, MDPI, vol. 12(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1453-:d:223488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    2. Clayton, Christopher K. & Whitty, Kevin J., 2014. "Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 116(C), pages 416-423.
    3. Wang, Kun & Tian, Xin & Zhao, Haibo, 2016. "Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier," Applied Energy, Elsevier, vol. 166(C), pages 84-95.
    4. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Haaf & Peter Ohlemüller & Jochen Ströhle & Bernd Epple, 2020. "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 149-164, February.
    2. Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
    3. Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
    4. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    5. Gyeong-Min Kim & Jong-Pil Kim & Kevin Yohanes Lisandy & Chung-Hwan Jeon, 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite," Energies, MDPI, vol. 10(9), pages 1-14, September.
    6. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    7. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    8. Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Jan Hendrik Cloete & Schalk Cloete & Shahriar Amini, 2020. "Exergy Analysis of Gas Switching Chemical Looping IGCC Plants," Energies, MDPI, vol. 13(3), pages 1-25, January.
    9. Deng, Guixian & Li, Kongzhai & Zhang, Guifang & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Wang, Hua, 2019. "Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    11. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    12. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    13. Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2017. "Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process," Applied Energy, Elsevier, vol. 208(C), pages 561-570.
    14. Cao, Yang & He, Boshu & Ding, Guangchao & Su, Liangbin & Duan, Zhipeng, 2017. "Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes," Energy, Elsevier, vol. 140(P1), pages 47-57.
    15. Birkelbach, Felix & Deutsch, Markus & Werner, Andreas, 2020. "The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study," Renewable Energy, Elsevier, vol. 152(C), pages 300-307.
    16. Ksepko, Ewelina & Babiński, Piotr & Nalbandian, Lori, 2017. "The redox reaction kinetics of Sinai ore for chemical looping combustion applications," Applied Energy, Elsevier, vol. 190(C), pages 1258-1274.
    17. Fredrik Hildor & Henrik Leion & Tobias Mattisson, 2022. "Steel Converter Slag as an Oxygen Carrier—Interaction with Sulfur Dioxide," Energies, MDPI, vol. 15(16), pages 1-29, August.
    18. Florian Lebendig & Ibai Funcia & Rául Pérez-Vega & Michael Müller, 2022. "Investigations on the Effect of Pre-Treatment of Wheat Straw on Ash-Related Issues in Chemical Looping Gasification (CLG) in Comparison with Woody Biomass," Energies, MDPI, vol. 15(9), pages 1-25, May.
    19. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    20. Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1453-:d:223488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.