IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v116y2014icp416-423.html
   My bibliography  Save this article

Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling

Author

Listed:
  • Clayton, Christopher K.
  • Whitty, Kevin J.

Abstract

Chemical looping combustion with oxygen uncoupling (CLOU) is a promising CO2-capture ready energy technology that employs oxygen carriers with thermodynamic properties that cause oxygen to be spontaneously liberated as gaseous O2 in the fuel reactor, where it can react directly with solid fuels. One of the promising CLOU carrier metals is copper, cycling between CuO and Cu2O. Experimentally-determined rate expressions for these reactions are needed for proper development, modeling and scale-up of CLOU technology. The CuO–Cu2O system presents an interesting challenge in that the rate of decomposition depends on the thermodynamic driving force imparted by the difference between equilibrium and actual partial pressures of oxygen, and the equilibrium partial pressure is strongly temperature dependent in the range useful for combustion. This study investigates decomposition of two different copper-based oxygen carriers, from CuO to Cu2O oxidation states, to develop a universal kinetic expression to describe the observed rate of reaction as a function of temperature, conversion and gas environment. The kinetic model developed is compared to results of a third support type (silica) using two different CuOwt% loadings (64wt% CuO and 16wt% CuO) to demonstrate applicability to other support types and copper oxide loadings.

Suggested Citation

  • Clayton, Christopher K. & Whitty, Kevin J., 2014. "Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 116(C), pages 416-423.
  • Handle: RePEc:eee:appene:v:116:y:2014:i:c:p:416-423
    DOI: 10.1016/j.apenergy.2013.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jussi Saari & Petteri Peltola & Tero Tynjälä & Timo Hyppänen & Juha Kaikko & Esa Vakkilainen, 2020. "High-Efficiency Bioenergy Carbon Capture Integrating Chemical Looping Combustion with Oxygen Uncoupling and a Large Cogeneration Plant," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    3. Ping Wang & Bret Howard & Nicholas Means & Dushyant Shekhawat & David Berry, 2019. "Coal Chemical-Looping with Oxygen Uncoupling (CLOU) Using a Cu-Based Oxygen Carrier Derived from Natural Minerals," Energies, MDPI, vol. 12(8), pages 1-13, April.
    4. Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
    5. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    6. Birkelbach, Felix & Deutsch, Markus & Werner, Andreas, 2020. "The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A non-parametric modeling study," Renewable Energy, Elsevier, vol. 152(C), pages 300-307.
    7. Cao, Yang & He, Boshu & Ding, Guangchao & Su, Liangbin & Duan, Zhipeng, 2017. "Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes," Energy, Elsevier, vol. 140(P1), pages 47-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:116:y:2014:i:c:p:416-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.