IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp561-570.html
   My bibliography  Save this article

Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process

Author

Listed:
  • Adánez-Rubio, Iñaki
  • Abad, Alberto
  • Gayán, Pilar
  • García-Labiano, Francisco
  • de Diego, Luis F.
  • Adánez, Juan

Abstract

The Chemical Looping with Oxygen Uncoupling (CLOU) process is a form of Chemical Looping Combustion (CLC) technology that enables the combustion of solid fuels by means of oxygen carriers that release gaseous oxygen in the fuel reactor, i.e. with oxygen uncoupling capability. In recent years, tests have found several Cu-based, Mn-based and mixed oxide oxygen carriers with suitable properties for the CLOU process. Among them, Cu-Mn mixed oxides show high reactivity and high O2 equilibrium concentration at temperatures of interest for coal combustion. In this work, proof of concept was demonstrated by burning coal with Cu-Mn mixed oxides in a 1.5kWth CLOU unit for the first time. The effect of fuel reactor temperature, solids circulation flow, fluidization agent in the fuel reactor (inert N2 or steam as gasifying agent), and excess air in the air reactor on combustion efficiency and CO2 capture rate was analysed. The results showed that high combustion efficiency and CO2 capture are feasible using this material at relatively low fuel reactor operating temperatures. Therefore, the developed Cu-Mn mixed oxide was a suitable material for use as an oxygen carrier for the CLOU combustion of solid fuels. Optimum operating conditions were determined for this oxygen carrier with regard to the oxygen circulation rate and air reactor conditions for the regeneration of the oxygen carrier.

Suggested Citation

  • Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2017. "Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process," Applied Energy, Elsevier, vol. 208(C), pages 561-570.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:561-570
    DOI: 10.1016/j.apenergy.2017.09.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    2. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    3. Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
    4. Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2014. "The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process," Applied Energy, Elsevier, vol. 113(C), pages 1855-1862.
    5. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    6. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
    7. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    8. Källén, Malin & Rydén, Magnus & Lyngfelt, Anders & Mattisson, Tobias, 2015. "Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers," Applied Energy, Elsevier, vol. 157(C), pages 330-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    2. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    3. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    4. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    5. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    6. Cho, Won Chul & Lee, Jun Kyu & Nam, Gyeong Duk & Kim, Chang Hee & Cho, Hyun-Seok & Joo, Jong Hoon, 2019. "Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane," Applied Energy, Elsevier, vol. 239(C), pages 644-657.
    7. Cabello, Arturo & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2021. "Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers," Applied Energy, Elsevier, vol. 287(C).
    8. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    9. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    10. Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
    11. Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
    12. Imtiaz, Qasim & Broda, Marcin & Müller, Christoph R., 2014. "Structure–property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 119(C), pages 557-565.
    13. Iñaki Adánez-Rubio & Antón Pérez-Astray & Alberto Abad & Pilar Gayán & Luis F. Diego & Juan Adánez, 2019. "Chemical looping with oxygen uncoupling: an advanced biomass combustion technology to avoid CO2 emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1293-1306, October.
    14. Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
    15. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    16. Xing Chen & Shuai Zhang & Rui Xiao & Peng Li, 2017. "Modification of traditionally impregnated Fe 2 O 3 /Al 2 O 3 oxygen carriers by ultrasonic method and their performance in chemical looping combustion," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 65-77, February.
    17. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    18. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    19. Nakano, Anna & Nakano, Jinichiro & Bennett, James, 2020. "Real-time high temperature investigations of an individual natural hematite ore particle for chemical looping oxygen exchange," Applied Energy, Elsevier, vol. 268(C).
    20. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.

    More about this item

    Keywords

    CO2 capture; Coal; CLOU; Mixed oxide; Copper; Manganese;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:561-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.