IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1064-d501315.html
   My bibliography  Save this article

Accurate Online Battery Impedance Measurement Method with Low Output Voltage Ripples on Power Converters

Author

Listed:
  • Qi Yao

    (Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Dylan-Dah-Chuan Lu

    (Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Gang Lei

    (Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

The conventional online battery impedance measurement method works by perturbing the duty cycle of the DC-DC power converter and measuring the response of the battery voltage and current. This periodical duty cycle perturbation will continuously generate large voltage ripples at the output of power converters. These large ripples will not easily be removed due to the high amplitude and wide frequency range and would be a challenge to meet tight output regulation. To solve this problem, this paper presents a new online battery impedance measurement technique by inserting a small switched resistor circuit (SRC) into the converter. The first contribution of this work is that the perturbation source is moved from the main switch to the input-side of the converter, so the ripples are reduced. The analysis and experimental results of the proposed method show a reduction of 16-times compared with the conventional method. The second contribution tackles the possible change of the battery state of charge (SOC) during the online battery measurement process, which will inevitably influence the impedance measurement accuracy. In this proposed method, battery impedance at multiple frequencies can be measured simultaneously using only one perturbation to accelerate measurement speed and minimize possible SOC change. The experimental impedance results coincide with a high-accuracy laboratory battery impedance analyzer.

Suggested Citation

  • Qi Yao & Dylan-Dah-Chuan Lu & Gang Lei, 2021. "Accurate Online Battery Impedance Measurement Method with Low Output Voltage Ripples on Power Converters," Energies, MDPI, vol. 14(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1064-:d:501315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haifeng Dai & Bo Jiang & Xuezhe Wei, 2018. "Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient," Energies, MDPI, vol. 11(1), pages 1-18, January.
    2. Uddin, Kotub & Moore, Andrew D. & Barai, Anup & Marco, James, 2016. "The effects of high frequency current ripple on electric vehicle battery performance," Applied Energy, Elsevier, vol. 178(C), pages 142-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    2. Duy-Dinh Nguyen & The-Tiep Pham & Tat-Thang Le & Sewan Choi & Kazuto Yukita, 2023. "A Modulation Method for Three-Phase Dual-Active-Bridge Converters in Battery Charging Applications," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    4. Duy-Dinh Nguyen & Ngoc-Tam Bui & Kazuto Yukita, 2019. "Design and Optimization of Three-Phase Dual-Active-Bridge Converters for Electric Vehicle Charging Stations," Energies, MDPI, vol. 13(1), pages 1-17, December.
    5. Dai-Duong Tran & Sajib Chakraborty & Yuanfeng Lan & Mohamed El Baghdadi & Omar Hegazy, 2020. "NSGA-II-Based Codesign Optimization for Power Conversion and Controller Stages of Interleaved Boost Converters in Electric Vehicle Drivetrains," Energies, MDPI, vol. 13(19), pages 1-31, October.
    6. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    7. Yong Li & Jue Yang & Wei Long Liu & Cheng Lin Liao, 2020. "Multi-Level Model Reduction and Data-Driven Identification of the Lithium-Ion Battery," Energies, MDPI, vol. 13(15), pages 1-23, July.
    8. João Faria & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2019. "Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System," Energies, MDPI, vol. 12(5), pages 1-24, March.
    9. Gaizka Saldaña & José Ignacio San Martín & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, MDPI, vol. 12(14), pages 1-27, July.
    10. Pablo Korth Pereira Ferraz & Julia Kowal, 2019. "A Comparative Study on the Influence of DC/DC-Converter Induced High Frequency Current Ripple on Lithium-Ion Batteries," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    11. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2021. "On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station," Energies, MDPI, vol. 14(3), pages 1-13, January.
    12. Fatemeh Nasr Esfahani & Ahmed Darwish & Barry W. Williams, 2022. "Power Converter Topologies for Grid-Tied Solar Photovoltaic (PV) Powered Electric Vehicles (EVs)—A Comprehensive Review," Energies, MDPI, vol. 15(13), pages 1-28, June.
    13. Evelina Wikner & Raik Orbay & Sara Fogelström & Torbjörn Thiringer, 2022. "Gender Aspects in Driving Style and Its Impact on Battery Ageing," Energies, MDPI, vol. 15(18), pages 1-15, September.
    14. Mohammad Al-Amin & Anup Barai & T.R. Ashwin & James Marco, 2021. "An Insight to the Degradation Behaviour of the Parallel Connected Lithium-Ion Battery Cells," Energies, MDPI, vol. 14(16), pages 1-18, August.
    15. Sid-Ali Amamra & Yashraj Tripathy & Anup Barai & Andrew D. Moore & James Marco, 2020. "Electric Vehicle Battery Performance Investigation Based on Real World Current Harmonics," Energies, MDPI, vol. 13(2), pages 1-13, January.
    16. Brian Ospina Agudelo & Walter Zamboni & Eric Monmasson, 2021. "A Comparison of Time-Domain Implementation Methods for Fractional-Order Battery Impedance Models," Energies, MDPI, vol. 14(15), pages 1-23, July.
    17. Ghassemi, Alireza & Chakraborty Banerjee, Parama & Hollenkamp, Anthony F. & Zhang, Zhe & Bahrani, Behrooz, 2021. "Effects of alternating current on Li-ion battery performance: Monitoring degradative processes with in-situ characterization techniques," Applied Energy, Elsevier, vol. 284(C).
    18. Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
    19. Wanderson Francisco Lopes & Mário Lúcio da Silva Martins & Attilio Converti & Hugo Valadares Siqueira & Carlos Henrique Illa Font, 2024. "Experimental Evaluation of a 2 kW/100 kHz DC–DC Bidirectional Converter Based on a Cuk Converter Using a Voltage-Doubler Concept," Energies, MDPI, vol. 17(2), pages 1-25, January.
    20. Nguyễn, Bảo-Huy & Vo-Duy, Thanh & Henggeler Antunes, Carlos & Trovão, João Pedro F., 2021. "Multi-objective benchmark for energy management of dual-source electric vehicles: An optimal control approach," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1064-:d:501315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.