IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3241-d260063.html
   My bibliography  Save this article

Data-Driven Model-Free Adaptive Control Based on Error Minimized Regularized Online Sequential Extreme Learning Machine

Author

Listed:
  • Xiaofei Zhang

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Hongbin Ma

    (State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Model-free adaptive control (MFAC) builds a virtual equivalent dynamic linearized model by using a dynamic linearization technique. The virtual equivalent dynamic linearized model contains some time-varying parameters, time-varying parameters usually include high nonlinearity implicitly, and the performance will degrade if the nonlinearity of these time-varying parameters is high. In this paper, first, a novel learning algorithm named error minimized regularized online sequential extreme learning machine (EMREOS-ELM) is investigated. Second, EMREOS-ELM is used to estimate those time-varying parameters, a model-free adaptive control method based on EMREOS-ELM is introduced for single-input single-output unknown discrete-time nonlinear systems, and the stability of the proposed algorithm is guaranteed by theoretical analysis. Finally, the proposed algorithm is compared with five other control algorithms for an unknown discrete-time nonlinear system, and simulation results show that the proposed algorithm can improve the performance of control systems.

Suggested Citation

  • Xiaofei Zhang & Hongbin Ma, 2019. "Data-Driven Model-Free Adaptive Control Based on Error Minimized Regularized Online Sequential Extreme Learning Machine," Energies, MDPI, vol. 12(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3241-:d:260063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Shyan Wang & Tse-Ming Tsai, 2017. "Sliding Mode and Neural Network Control of Sensorless PMSM Controlled System for Power Consumption and Performance Improvement," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. João Faria & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2019. "Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System," Energies, MDPI, vol. 12(5), pages 1-24, March.
    3. R.S. Sánchez-Peña & P. Colmegna & F. Bianchi, 2015. "Unfalsified control based on the controller parameterisation," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(15), pages 2820-2831, November.
    4. Xiao-Li Li & Chao Jia & De-xin Liu & Da-wei Ding, 2014. "Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-11, May.
    5. Yan Xia & Yuchen Dai & Wenxu Yan & Dezhi Xu & Chengshun Yang, 2018. "Adaptive-Observer-Based Data Driven Voltage Control in Islanded-Mode of Distributed Energy Resource Systems," Energies, MDPI, vol. 11(12), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    2. Jongwon Choi & Kwanghee Nam, 2018. "Wound Synchronous Machine Sensorless Control Based on Signal Injection into the Rotor Winding," Energies, MDPI, vol. 11(12), pages 1-20, November.
    3. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    4. João Faria & João Fermeiro & José Pombo & Maria Calado & Sílvio Mariano, 2020. "Proportional Resonant Current Control and Output-Filter Design Optimization for Grid-Tied Inverters Using Grey Wolf Optimizer," Energies, MDPI, vol. 13(8), pages 1-18, April.
    5. Wei Zhang & Ming Zhong & Junfei Han & Yumei Sun & Yang Wang, 2022. "Research on the strategy of lithium-ion battery–supercapacitor hybrid energy storage to suppress power fluctuation of direct current microgrid [Load frequency control of a novel renewable energy in," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1012-1017.
    6. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    7. Omer Cihan Kivanc & Salih Baris Ozturk, 2019. "Low-Cost Position Sensorless Speed Control of PMSM Drive Using Four-Switch Inverter," Energies, MDPI, vol. 12(4), pages 1-24, February.
    8. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    9. Zhenxing Zhao & Kaijie Chen & Ying Chen & Yuxing Dai & Zeng Liu & Kuiyin Zhao & Huan Wang & Zishun Peng, 2021. "An Ultra-Fast Power Prediction Method Based on Simplified LSSVM Hyperparameters Optimization for PV Power Smoothing," Energies, MDPI, vol. 14(18), pages 1-15, September.
    10. Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
    11. Christian Aldrete-Maldonado & Ramon Ramirez-Villalobos & Luis N. Coria & Corina Plata-Ante, 2023. "Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    12. Chunlei Wang & Dongxing Cao, 2020. "New Sensorless Speed Control of a Hybrid Stepper Motor Based on Fuzzy Sliding Mode Observer," Energies, MDPI, vol. 13(18), pages 1-19, September.
    13. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    14. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    15. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.
    16. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    17. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.
    18. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    19. Tiezhou Wu & Wenshan Yu & Lujun Wang & Linxin Guo & Zhiquan Tang, 2019. "Power Distribution Strategy of Microgrid Hybrid Energy Storage System Based on Improved Hierarchical Control," Energies, MDPI, vol. 12(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3241-:d:260063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.