IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p720-d208171.html
   My bibliography  Save this article

Modeling Vehicles to Grid as a Source of Distributed Frequency Regulation in Isolated Grids with Significant RES Penetration

Author

Listed:
  • Neofytos Neofytou

    (School of Electrical and Computer Engineering, Technical University of Crete, University Campus, GR-73100 Chania, Greece)

  • Konstantinos Blazakis

    (School of Electrical and Computer Engineering, Technical University of Crete, University Campus, GR-73100 Chania, Greece)

  • Yiannis Katsigiannis

    (Department of Environmental and Natural Resources Engineering, Technological Educational Institute of Crete, Romanou 3, GR-73100 Chania, Greece)

  • Georgios Stavrakakis

    (School of Electrical and Computer Engineering, Technical University of Crete, University Campus, GR-73100 Chania, Greece)

Abstract

The rapid development of technology used in electric vehicles, and in particular their penetration in electricity networks, is a major challenge for the area of electric power systems. The utilization of battery capacity of the interconnected vehicles can bring significant benefits to the network via the Vehicle to Grid (V2G) operation. The V2G operation is a process that can provide primary frequency regulation services in the electric network by exploiting the total capacity of a fleet of electric vehicles. In this paper, the impact of the plug-in hybrid electric vehicles (PHEVs) in the primary frequency regulation is studied and the effects PHEVs cause in non-interconnected isolated power systems with significant renewable energy sources (RES) penetration. Also it is taken into consideration the requirements of users for charging their vehicles. The V2G operation can be performed either with fluctuations in charging power of vehicles, or by charging or discharging the battery. So an electric vehicle user can participate in V2G operation either during the loading of the vehicle to the charging station, or by connecting the vehicle in the charging station without any further demands to charge its battery. In this paper, the response of PHEVs with respect to the frequency fluctuations of the network is modeled and simulated. Additionally, by using the PowerWorld Simulator software, simulations of the isolated power system of Cyprus Island, including the current RES penetration are performed in order to demonstrate the effectiveness of V2G operation in its primary frequency regulation.

Suggested Citation

  • Neofytos Neofytou & Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2019. "Modeling Vehicles to Grid as a Source of Distributed Frequency Regulation in Isolated Grids with Significant RES Penetration," Energies, MDPI, vol. 12(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:720-:d:208171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyungsung An & Kyung-Bin Song & Kyeon Hur, 2017. "Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration," Energies, MDPI, vol. 10(5), pages 1-15, May.
    2. Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.
    3. Claudia Rahmann & Alfredo Castillo, 2014. "Fast Frequency Response Capability of Photovoltaic Power Plants: The Necessity of New Grid Requirements and Definitions," Energies, MDPI, vol. 7(10), pages 1-17, September.
    4. Sekyung Han & Soohee Han, 2013. "Economic Feasibility of V2G Frequency Regulation in Consideration of Battery Wear," Energies, MDPI, vol. 6(2), pages 1-18, February.
    5. Meng, Jian & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qu, Bo, 2016. "Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system," Applied Energy, Elsevier, vol. 162(C), pages 966-979.
    6. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    7. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    8. Jun Yang & Zhili Zeng & Yufei Tang & Jun Yan & Haibo He & Yunliang Wu, 2015. "Load Frequency Control in Isolated Micro-Grids with Electrical Vehicles Based on Multivariable Generalized Predictive Theory," Energies, MDPI, vol. 8(3), pages 1-20, March.
    9. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    10. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rayhane Koubaa & Yeliz Yoldas & Selcuk Goren & Lotfi Krichen & Ahmet Onen, 2021. "Implementation of cost benefit analysis of vehicle to grid coupled real Micro-Grid by considering battery energy wear: Practical study case," Energy & Environment, , vol. 32(7), pages 1292-1314, November.
    2. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    3. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.
    4. Hak-Ju Lee & Byeong-Chan Oh & Seok-Woong Kim & Sung-Yul Kim, 2020. "V2G Strategy for Improvement of Distribution Network Reliability Considering Time Space Network of EVs," Energies, MDPI, vol. 13(17), pages 1-19, August.
    5. Kalim U. Shah & Mohammed Awojobi & Zakia Soomauroo, 2022. "Electric vehicle adoption in small island economies: Review from a technology transition perspective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    6. Xiaohong Dong & Yang Ma & Xiaodan Yu & Xiangyu Wei & Yanqi Ren & Xin Zhang, 2023. "Secondary Frequency Regulation Control Strategy with Electric Vehicles Considering User Travel Uncertainty," Energies, MDPI, vol. 16(9), pages 1-18, April.
    7. Nnaemeka Vincent Emodi & Scott Dwyer & Kriti Nagrath & John Alabi, 2022. "Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage," Sustainability, MDPI, vol. 14(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    2. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    3. Liu, Hui & Wang, Bin & Wang, Ni & Wu, Qiuwei & Yang, Yude & Wei, Hua & Li, Canbing, 2018. "Enabling strategies of electric vehicles for under frequency load shedding," Applied Energy, Elsevier, vol. 228(C), pages 843-851.
    4. Rao, Yingqing & Yang, Jun & Xiao, Jinxing & Xu, Bingyan & Liu, Wenjing & Li, Yonghui, 2021. "A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control," Energy, Elsevier, vol. 222(C).
    5. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    7. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    8. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    9. Wojciech Lewicki & Hasan Huseyin Coban & Jacek Wróbel, 2024. "Integration of Electric Vehicle Power Supply Systems—Case Study Analysis of the Impact on a Selected Urban Network in Türkiye," Energies, MDPI, vol. 17(14), pages 1-15, July.
    10. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    11. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    12. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    13. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.
    14. Yuxin Wen & Peixiao Fan & Jia Hu & Song Ke & Fuzhang Wu & Xu Zhu, 2022. "An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    15. Jin, Xiaolong & Wu, Jianzhong & Mu, Yunfei & Wang, Mingshen & Xu, Xiandong & Jia, Hongjie, 2017. "Hierarchical microgrid energy management in an office building," Applied Energy, Elsevier, vol. 208(C), pages 480-494.
    16. Peng, Chao & Zou, Jianxiao & Lian, Lian, 2017. "Dispatching strategies of electric vehicles participating in frequency regulation on power grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 147-152.
    17. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    18. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    19. Falahati, Saber & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2016. "Grid frequency control with electric vehicles by using of an optimized fuzzy controller," Applied Energy, Elsevier, vol. 178(C), pages 918-928.
    20. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:720-:d:208171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.