IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp480-494.html
   My bibliography  Save this article

Hierarchical microgrid energy management in an office building

Author

Listed:
  • Jin, Xiaolong
  • Wu, Jianzhong
  • Mu, Yunfei
  • Wang, Mingshen
  • Xu, Xiandong
  • Jia, Hongjie

Abstract

A two-stage hierarchical Microgrid energy management method in an office building is proposed, which considers uncertainties from renewable generation, electric load demand, outdoor temperature and solar radiation. In stage 1, a day-ahead optimal economic dispatch method is proposed to minimize the daily Microgrid operating cost, with the virtual energy storage system being dispatched as a flexible resource. In stage 2, a two-layer intra-hour adjustment methodology is proposed to smooth the power exchanges at the point of common coupling by coordinating the virtual energy storage system and the electric vehicles at two different time scales. A Vehicle-to-Building control strategy was developed to dispatch the electric vehicles as a flexible resource. Numerical studies demonstrated that the proposed method is able to reduce the daily operating cost at the day-ahead dispatch stage and smooth the fluctuations of the electric power exchanges at the intra-hour adjustment stage.

Suggested Citation

  • Jin, Xiaolong & Wu, Jianzhong & Mu, Yunfei & Wang, Mingshen & Xu, Xiandong & Jia, Hongjie, 2017. "Hierarchical microgrid energy management in an office building," Applied Energy, Elsevier, vol. 208(C), pages 480-494.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:480-494
    DOI: 10.1016/j.apenergy.2017.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    2. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    3. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    4. Ghasemi, A. & Shayeghi, H. & Moradzadeh, M. & Nooshyar, M., 2016. "A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management," Applied Energy, Elsevier, vol. 177(C), pages 40-59.
    5. Xu, Xiandong & Jin, Xiaolong & Jia, Hongjie & Yu, Xiaodan & Li, Kang, 2015. "Hierarchical management for integrated community energy systems," Applied Energy, Elsevier, vol. 160(C), pages 231-243.
    6. Meng, Jian & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qu, Bo, 2016. "Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system," Applied Energy, Elsevier, vol. 162(C), pages 966-979.
    7. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    8. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    9. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    10. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    11. Fadzli Haniff, Mohamad & Selamat, Hazlina & Yusof, Rubiyah & Buyamin, Salinda & Sham Ismail, Fatimah, 2013. "Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 94-103.
    12. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    13. Adil Zainal, Omer & Yumrutaş, Recep, 2015. "Validation of periodic solution for computing CLTD (cooling load temperature difference) values for building walls and flat roofs," Energy, Elsevier, vol. 82(C), pages 758-768.
    14. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    2. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    3. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    4. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    5. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    6. Zhang, Wenjie & Gandhi, Oktoviano & Quan, Hao & Rodríguez-Gallegos, Carlos D. & Srinivasan, Dipti, 2018. "A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination," Applied Energy, Elsevier, vol. 229(C), pages 96-110.
    7. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    8. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    10. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    11. Sharma, A. & Bhakar, R. & Tiwari, H.P. & Li, R. & Li, F., 2017. "A novel hierarchical contribution factor based model for distribution use-of-system charges," Applied Energy, Elsevier, vol. 208(C), pages 996-1006.
    12. Parhizkar, Tarannom & Mosleh, Ali & Roshandel, Ramin, 2017. "Aging based optimal scheduling framework for power plants using equivalent operating hour approach," Applied Energy, Elsevier, vol. 205(C), pages 1345-1363.
    13. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    14. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    15. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    16. Weiliang Liu & Changliang Liu & Yongjun Lin & Liangyu Ma & Kang Bai & Yanqun Wu, 2018. "Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System," Energies, MDPI, vol. 11(4), pages 1-23, April.
    17. Liu, Hui & Wang, Bin & Wang, Ni & Wu, Qiuwei & Yang, Yude & Wei, Hua & Li, Canbing, 2018. "Enabling strategies of electric vehicles for under frequency load shedding," Applied Energy, Elsevier, vol. 228(C), pages 843-851.
    18. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    19. Moazeni, Faegheh & Khazaei, Javad, 2020. "Dynamic economic dispatch of islanded water-energy microgrids with smart building thermal energy management system," Applied Energy, Elsevier, vol. 276(C).
    20. Rahmat Khezri & Arman Oshnoei & Mehrdad Tarafdar Hagh & SM Muyeen, 2018. "Coordination of Heat Pumps, Electric Vehicles and AGC for Efficient LFC in a Smart Hybrid Power System via SCA-Based Optimized FOPID Controllers," Energies, MDPI, vol. 11(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:480-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.