IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp420-431.html
   My bibliography  Save this article

Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving

Author

Listed:
  • Zhang, Sheng
  • Cheng, Yong
  • Fang, Zhaosong
  • Huan, Chao
  • Lin, Zhang

Abstract

Elevated room air temperature is normally accompanied by elevated room air velocity to provide thermal comfort and save energy. One problem is that an excessively high room air temperature would deteriorate the energy performance of the air conditioning system due to the increased energy consumption of the ventilation fans. Another problem is that existing thermal comfort evaluation models in the field of building energy performance may fail because most of the building simulation tools/building management systems cannot provide accurate information on the elevated room air velocity. This study proposes a room air temperature optimization method to achieve intended thermal condition and to minimize energy consumption of the air conditioning system with stratum ventilation simultaneously. Firstly, the PMV model for thermal condition evaluation is modified by representing the room air velocity in the original PMV model given in ASHRAE 55-2013 using the room air temperature and supply airflow rate. Secondly, with the modified PMV, one supply airflow rate is quantified for one room air temperature to achieve the intended thermal condition (i.e., the intended PMV value); and the energy consumptions of different room air temperatures are evaluated using building energy simulations. Objective measurements and subjective surveys in a typical classroom in Hong Kong validate the modified PMV with a mean discrepancy of 0.14 scale from the thermal sensation vote. TRNSYS simulations demonstrate the effectiveness of the proposed method that the energy consumption of the air conditioning system is reduced by 7.8% while satisfying the intended thermal comfort.

Suggested Citation

  • Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:420-431
    DOI: 10.1016/j.apenergy.2017.07.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2017. "Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage," Applied Energy, Elsevier, vol. 190(C), pages 600-611.
    4. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
    5. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    6. Wong, L.T. & Mui, K.W., 2009. "Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong," Applied Energy, Elsevier, vol. 86(10), pages 1933-1938, October.
    7. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    8. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    9. Atam, Ercan, 2017. "Current software barriers to advanced model-based control design for energy-efficient buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1031-1040.
    10. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    11. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    12. Chen, Xiao & Wang, Qian & Srebric, Jelena, 2016. "Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation," Applied Energy, Elsevier, vol. 164(C), pages 341-351.
    13. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    14. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    2. Wu, Bingjie & Cai, Wenjian & Chen, Haoran, 2021. "A model-based multi-objective optimization of energy consumption and thermal comfort for active chilled beam systems," Applied Energy, Elsevier, vol. 287(C).
    3. Zhang, Sheng & Ai, Zhengtao & Lin, Zhang, 2021. "Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving," Applied Energy, Elsevier, vol. 293(C).
    4. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    5. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    6. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    7. Fong, K.F. & Lee, C.K. & Lin, Z., 2019. "Investigation on effect of indoor air distribution strategy on solar air-conditioning systems," Renewable Energy, Elsevier, vol. 131(C), pages 413-421.
    8. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    9. Zhang, Sheng & Cheng, Yong & Liu, Jian & Lin, Zhang, 2019. "Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    11. Li, Han & Fu, Zheng & Xi, Chang & Li, Nana & Li, Wei & Kong, Xiangfei, 2022. "Study on the impact of parallel jet spacing on the performance of multi-jet stratum ventilation," Applied Energy, Elsevier, vol. 306(PB).
    12. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    13. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    14. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    15. Kong, Xiangfei & Xi, Chang & Li, Han & Lin, Zhang, 2020. "Multi-parameter performance optimization for whole year operation of stratum ventilation in offices," Applied Energy, Elsevier, vol. 268(C).
    16. Zhang, Sheng & Lu, Yalin & Niu, Dun & Lin, Zhang, 2022. "Energy performance index of air distribution: Thermal utilization effectiveness," Applied Energy, Elsevier, vol. 307(C).
    17. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    18. Haider Latif & Samira Rahnama & Alessandro Maccarini & Goran Hultmark & Peter V. Nielsen & Alireza Afshari, 2022. "Precision Ventilation in an Open-Plan Office: A New Application of Active Chilled Beam (ACB) with a JetCone Feature," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    19. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    20. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    21. Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    2. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    3. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    4. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    6. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    7. Naja Aqilah & Hom Bahadur Rijal & Sheikh Ahmad Zaki, 2022. "A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential," Energies, MDPI, vol. 15(23), pages 1-23, November.
    8. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    9. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    10. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    11. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    12. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    13. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    14. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    15. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    16. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    17. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    18. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    19. Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
    20. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:420-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.