IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1988-d121516.html
   My bibliography  Save this article

Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

Author

Listed:
  • Dehua Zheng

    (Microgrid Platform R&D Center, Goldwind Science and Etechwin Electric Co., Ltd. BDA, Beijing 100176, China)

  • Min Shi

    (State Grid Hebei Electric Power Company, Shijiazhuang 050022, China)

  • Yifeng Wang

    (State Grid Hebei Electric Power Company, Shijiazhuang 050022, China)

  • Abinet Tesfaye Eseye

    (Microgrid Platform R&D Center, Goldwind Science and Etechwin Electric Co., Ltd. BDA, Beijing 100176, China
    School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China)

  • Jianhua Zhang

    (School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China)

Abstract

The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs) and distribution system operators (DSOs) in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT), genetic algorithm (GA) and artificial neural network (ANN) is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP) meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

Suggested Citation

  • Dehua Zheng & Min Shi & Yifeng Wang & Abinet Tesfaye Eseye & Jianhua Zhang, 2017. "Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy," Energies, MDPI, vol. 10(12), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1988-:d:121516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    2. Blonbou, Ruddy, 2011. "Very short-term wind power forecasting with neural networks and adaptive Bayesian learning," Renewable Energy, Elsevier, vol. 36(3), pages 1118-1124.
    3. Costa, Alexandre & Crespo, Antonio & Navarro, Jorge & Lizcano, Gil & Madsen, Henrik & Feitosa, Everaldo, 2008. "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1725-1744, August.
    4. Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dinh Thanh Viet & Vo Van Phuong & Minh Quan Duong & Quoc Tuan Tran, 2020. "Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms," Energies, MDPI, vol. 13(11), pages 1-22, June.
    2. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    3. Hugo Tavares Vieira Gouveia & Ronaldo Ribeiro Barbosa De Aquino & Aida Araújo Ferreira, 2018. "Enhancing Short-Term Wind Power Forecasting through Multiresolution Analysis and Echo State Networks," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Bogdan Bochenek & Jakub Jurasz & Adam Jaczewski & Gabriel Stachura & Piotr Sekuła & Tomasz Strzyżewski & Marcin Wdowikowski & Mariusz Figurski, 2021. "Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    5. Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
    6. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    7. Hugo T. V. Gouveia & Murilo A. Souza & Aida A. Ferreira & Jonata C. de Albuquerque & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Ronaldo R. B. de Aquino, 2023. "Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(6), pages 1-15, March.
    8. Robertas Lukočius & Žilvinas Nakutis & Vytautas Daunoras & Ramūnas Deltuva & Pranas Kuzas & Roma Račkienė, 2018. "An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids," Energies, MDPI, vol. 12(1), pages 1-26, December.
    9. Eric Stefan Miele & Nicole Ludwig & Alessandro Corsini, 2023. "Multi-Horizon Wind Power Forecasting Using Multi-Modal Spatio-Temporal Neural Networks," Energies, MDPI, vol. 16(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Atuahene & Yukun Bao & Yao Yevenyo Ziggah & Patricia Semwaah Gyan & Feng Li, 2018. "Short-Term Electric Power Forecasting Using Dual-Stage Hierarchical Wavelet- Particle Swarm Optimization- Adaptive Neuro-Fuzzy Inference System PSO-ANFIS Approach Based On Climate Change," Energies, MDPI, vol. 11(10), pages 1-19, October.
    2. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    3. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    4. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    5. Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
    6. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
    7. Hu, Jianming & Wang, Jianzhou & Ma, Kailiang, 2015. "A hybrid technique for short-term wind speed prediction," Energy, Elsevier, vol. 81(C), pages 563-574.
    8. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    9. Poncela, Marta & Poncela, Pilar & Perán, José Ramón, 2013. "Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting," Applied Energy, Elsevier, vol. 108(C), pages 349-362.
    10. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    11. Haque, Ashraf U. & Mandal, Paras & Kaye, Mary E. & Meng, Julian & Chang, Liuchen & Senjyu, Tomonobu, 2012. "A new strategy for predicting short-term wind speed using soft computing models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4563-4573.
    12. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    13. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
    14. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    15. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    16. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    17. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    18. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    19. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    20. Platero, C.A. & Nicolet, C. & Sánchez, J.A. & Kawkabani, B., 2014. "Increasing wind power penetration in autonomous power systems through no-flow operation of Pelton turbines," Renewable Energy, Elsevier, vol. 68(C), pages 515-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1988-:d:121516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.