IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i4p1709-1716.html
   My bibliography  Save this article

Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India

Author

Listed:
  • Kumar, Ujjwal
  • Jain, V.K.

Abstract

The present study applies three time series models, namely, Grey-Markov model, Grey-Model with rolling mechanism, and singular spectrum analysis (SSA) to forecast the consumption of conventional energy in India. Grey-Markov model has been employed to forecast crude-petroleum consumption while Grey-Model with rolling mechanism to forecast coal, electricity (in utilities) consumption and SSA to predict natural gas consumption. The models for each time series has been selected by carefully examining the structure of the individual time series. The mean absolute percentage errors (MAPE) for two out of sample forecasts have been obtained as follows: 1.6% for crude-petroleum, 3.5% for coal, 3.4% for electricity and 3.4% for natural gas consumption. For two out of sample forecasts, the prediction accuracy for coal consumption was 97.9%, 95.4% while for electricity consumption the prediction accuracy was 96.9%, 95.1%. Similarly, the prediction accuracy for crude-petroleum consumption was found to be 99.2%, 97.6% while for natural gas consumption these values were 98.6%, 94.5%. The results obtained have also been compared with those of Planning Commission of India's projection. The comparison clearly points to the enormous potential that these time series models possess in energy consumption forecasting and can be considered as a viable alternative.

Suggested Citation

  • Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1709-1716
    DOI: 10.1016/j.energy.2009.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mackay, R. M. & Probert, S. D., 2001. "Forecasting the United Kingdom's supplies and demands for fluid fossil-fuels," Applied Energy, Elsevier, vol. 69(3), pages 161-189, July.
    2. Mackay, R.M. & Probert, S.D., 1994. "Modified logit-function demand model for predicting national crude-oil and natural-gas consumptions," Applied Energy, Elsevier, vol. 49(1), pages 75-90.
    3. Chow, Larry Chuen-ho, 2001. "A study of sectoral energy consumption in Hong Kong (1984-97) with special emphasis on the household sector," Energy Policy, Elsevier, vol. 29(13), pages 1099-1110, November.
    4. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    5. Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
    6. Al-Garni, Ahmed Z. & Zubair, Syed M. & Nizami, Javeed S., 1994. "A regression model for electric-energy-consumption forecasting in Eastern Saudi Arabia," Energy, Elsevier, vol. 19(10), pages 1043-1049.
    7. Huang, Min & He, Yong & Cen, Haiyan, 2007. "Predictive analysis on electric-power supply and demand in China," Renewable Energy, Elsevier, vol. 32(7), pages 1165-1174.
    8. Kaboudan, Mahmoud A., 1989. "An econometric model for Zimbabwe's future electricity consumption," Energy, Elsevier, vol. 14(2), pages 75-85.
    9. S. Jebaraj & S. Iniyan & Hemanth Kota, 2007. "Forecasting of commercial energy consumption in India using Artificial Neural Network," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(3), pages 276-301.
    10. Kulshreshtha, Mudit & Parikh, Jyoti K., 2000. "Modeling demand for coal in India: vector autoregressive models with cointegrated variables," Energy, Elsevier, vol. 25(2), pages 149-168.
    11. Saab, Samer & Badr, Elie & Nasr, George, 2001. "Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon," Energy, Elsevier, vol. 26(1), pages 1-14.
    12. Sharma, D. Parameswara & Chandramohanan Nair, P. S. & Balasubramanian, R., 2002. "Demand for commercial energy in the state of Kerala, India: an econometric analysis with medium-range projections," Energy Policy, Elsevier, vol. 30(9), pages 781-791, July.
    13. Michalik, G. & Khan, M.E. & Bonwick, W.J. & Mielczarski, W., 1997. "Structural modelling of energy demand in the residential sector: 1. Development of structural models," Energy, Elsevier, vol. 22(10), pages 937-947.
    14. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    15. Iniyan, S. & Suganthi, L. & Samuel, Anand A., 2006. "Energy models for commercial energy prediction and substitution of renewable energy sources," Energy Policy, Elsevier, vol. 34(17), pages 2640-2653, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Shoaib Ahmed Khatri & Nayyar Hussain Mirjat & Khanji Harijan & Mohammad Aslam Uqaili & Syed Feroz Shah & Pervez Hameed Shaikh & Laveet Kumar, 2022. "An Overview of the Current Energy Situation of Pakistan and the Way Forward towards Green Energy Implementation," Energies, MDPI, vol. 16(1), pages 1-27, December.
    6. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    7. Azadeh, A. & Asadzadeh, S.M. & Ghanbari, A., 2010. "An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments," Energy Policy, Elsevier, vol. 38(3), pages 1529-1536, March.
    8. Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
    9. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    10. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.
    11. Azadeh, A. & Asadzadeh, S.M. & Saberi, M. & Nadimi, V. & Tajvidi, A. & Sheikalishahi, M., 2011. "A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE," Applied Energy, Elsevier, vol. 88(11), pages 3850-3859.
    12. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    13. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    14. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    15. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    16. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    17. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    18. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    19. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
    20. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1709-1716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.