Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.02.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maggio, G. & Cacciola, G., 2009. "A variant of the Hubbert curve for world oil production forecasts," Energy Policy, Elsevier, vol. 37(11), pages 4761-4770, November.
- Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
- Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
- Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
- Sailor, David J. & Rosen, Jesse N. & Muñoz, J.Ricardo, 1998. "Natural gas consumption and climate: a comprehensive set of predictive state-level models for the United States," Energy, Elsevier, vol. 23(2), pages 91-103.
- Chow, Gregory C & Lin, An-loh, 1971.
"Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series,"
The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
- Tom Doan, "undated". "CHOWLIN: RATS procedure to distribute a series to a higher frequency using related series," Statistical Software Components RTS00036, Boston College Department of Economics.
- Tom Doan, "undated". "DISAGGREGATE: RATS procedure to implement general disaggregation (interpolation/distribution) procedure," Statistical Software Components RTS00050, Boston College Department of Economics.
- Parikh, Jyoti & Purohit, Pallav & Maitra, Pallavi, 2007. "Demand projections of petroleum products and natural gas in India," Energy, Elsevier, vol. 32(10), pages 1825-1837.
- Herbert, John H. & Burns, Eugene M., 1991. "Analysis of natural gas consumption in commercial buildings using sample survey data," Energy, Elsevier, vol. 16(6), pages 903-908.
- Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
- Herbert, John H. & Sitzer, Scott & Eades-Pryor, Yvonne, 1987. "A statistical evaluation of aggregate monthly industrial demand for natural gas in the U.S.A," Energy, Elsevier, vol. 12(12), pages 1233-1238.
- Brkic, Dejan, 2009. "An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks," Applied Energy, Elsevier, vol. 86(7-8), pages 1290-1300, July.
- Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
- Balitskiy, Sergey & Bilan, Yuriy & Strielkowski, Wadim & Štreimikienė, Dalia, 2016. "Energy efficiency and natural gas consumption in the context of economic development in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 156-168.
- Emmanuel Flavian Sapnken & Jean Gaston Tamba & Salome Njakomo Essiane & Francis Djanna Koffi & Donatien Njomo, 2018. "Modeling and Forecasting Gasoline Consumption in Cameroon using Linear Regression Models," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 111-120.
- Szoplik, Jolanta, 2016. "Improving the natural gas transporting based on the steady state simulation results," Energy, Elsevier, vol. 109(C), pages 105-116.
- Spoladore, Alessandro & Borelli, Davide & Devia, Francesco & Mora, Flavio & Schenone, Corrado, 2016. "Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators," Applied Energy, Elsevier, vol. 182(C), pages 488-499.
- Zhihua Chen & Hui Wang & Tongxia Li & Ieongcheng Si, 2021. "Demand for Storage and Import of Natural Gas in China until 2060: Simulation with a Dynamic Model," Sustainability, MDPI, vol. 13(15), pages 1-19, August.
- Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
- Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
- Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
- Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
- Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
- Ergun Yukseltan & Ahmet Yucekaya & Ayse Humeyra Bilge & Esra Agca Aktunc, 2020. "Forecasting Models for Daily Natural Gas Consumption Considering Periodic Variations and Demand Segregation," Papers 2003.13385, arXiv.org.
- Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
- Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
- Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
- Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
- Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
- Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2019.
"Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach,"
Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(1), pages 1-22.
- Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2013. "Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach," Working Papers 2013/11, Bogazici University, Department of Economics.
- Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
- Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
- Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
- Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
- Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
- Song, Jiancai & Zhang, Liyi & Jiang, Qingling & Ma, Yunpeng & Zhang, Xinxin & Xue, Guixiang & Shen, Xingliang & Wu, Xiangdong, 2022. "Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model," Applied Energy, Elsevier, vol. 309(C).
- Zhao, Jing & Duan, Yaoqi & Liu, Xiaojuan, 2019. "Study on the policy of replacing coal-fired boilers with gas-fired boilers for central heating based on the 3E system and the TOPSIS method: A case in Tianjin, China," Energy, Elsevier, vol. 189(C).
- Serli Kiremitciyan & Ahmet Goncu & Tolga Umut Kuzubas, 2014. "A Comparison of Stochastic Models of Natural Gas Consumption," Working Papers 2014/10, Bogazici University, Department of Economics.
- Zhou, Zhong-bing & Dong, Xiu-cheng, 2012. "Analysis about the seasonality of China's crude oil import based on X-12-ARIMA," Energy, Elsevier, vol. 42(1), pages 281-288.
- Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
More about this item
Keywords
Cluster validity index; TSK system; Genetic algorithms; Least square estimate; Possibilistic Fuzzy C-Means; Natural gas network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:252-266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.