IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1364-1375.html
   My bibliography  Save this article

Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators

Author

Listed:
  • da Silva Benedito, Ricardo
  • Zilles, Roberto
  • Pinho, João Tavares

Abstract

Decentralised grid-connected photovoltaic systems (DGCPS) have proved to be an alternative to traditional electricity generation because they have introduced advantages to power systems, such as reducing electrical losses, relieving transmission and distribution lines, and provisioning ancillary services. Despite all these benefits, a new class of problem concerning DGCPS has been reported in the literature. From the utilities’ point of view, the installation of a DGCPS may lead to an apparent degradation of the load power factor. This effect does not have physical causes, i.e. equipment malfunction or overuse of reactive power by the load, although it may lead to reactive power excess charging (RPEC). Since these charges could lengthen the payback of PV installations, this paper aims to assess three strategies to tackle this issue. The first strategy, which has demonstrated to be best for prosumers, is a new regulatory scheme for reactive power monitoring in consumer units with DGCPS. The other two solutions are classical approaches based on reactive power compensation from PV inverters or capacitor banks. For these two last solutions, this paper provides an innovative and optimized way of operation that can adjust the load power factor measured by the utility in real-time, minimizing economic losses.

Suggested Citation

  • da Silva Benedito, Ricardo & Zilles, Roberto & Pinho, João Tavares, 2021. "Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators," Renewable Energy, Elsevier, vol. 164(C), pages 1364-1375.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1364-1375
    DOI: 10.1016/j.renene.2020.10.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamil, Majid & Anees, Ahmed Sharique, 2016. "Optimal sizing and location of SPV (solar photovoltaic) based MLDG (multiple location distributed generator) in distribution system for loss reduction, voltage profile improvement with economical bene," Energy, Elsevier, vol. 103(C), pages 231-239.
    2. Lacchini, Corrado & Dos Santos, João Carlos V., 2013. "Photovoltaic energy generation in Brazil – Cost analysis using coal-fired power plants as comparison," Renewable Energy, Elsevier, vol. 52(C), pages 183-189.
    3. Sampaio, Leonardo P. & de Brito, Moacyr A.G. & de A. e Melo, Guilherme & Canesin, Carlos A., 2016. "Grid-tie three-phase inverter with active power injection and reactive power compensation," Renewable Energy, Elsevier, vol. 85(C), pages 854-864.
    4. Pinto, Aimé & Zilles, Roberto, 2014. "Reactive power excess charging in grid-connected PV systems in Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 47-52.
    5. Min-Sung Kim & Raza Haider & Gyu-Jung Cho & Chul-Hwan Kim & Chung-Yuen Won & Jong-Seo Chai, 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, MDPI, vol. 12(5), pages 1-21, March.
    6. Cagnano, A. & Torelli, F. & Alfonzetti, F. & De Tuglie, E., 2011. "Can PV plants provide a reactive power ancillary service? A treat offered by an on-line controller," Renewable Energy, Elsevier, vol. 36(3), pages 1047-1052.
    7. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.
    8. Kolhe, Mohan Lal & Rasul, M.J.M.A., 2020. "3-Phase grid-connected building integrated photovoltaic system with reactive power control capability," Renewable Energy, Elsevier, vol. 154(C), pages 1065-1075.
    9. Zeb, Kamran & Uddin, Waqar & Khan, Muhammad Adil & Ali, Zunaib & Ali, Muhammad Umair & Christofides, Nicholas & Kim, H.J., 2018. "A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1120-1141.
    10. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    11. Hassaine, L. & Olias, E. & Quintero, J. & Haddadi, M., 2009. "Digital power factor control and reactive power regulation for grid-connected photovoltaic inverter," Renewable Energy, Elsevier, vol. 34(1), pages 315-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cícero Augusto de Souza & Diego Jose da Silva & Priscila Rossoni & Edmarcio Antonio Belati & Ademir Pelizari & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2023. "Multi-Period Optimal Power Flow with Photovoltaic Generation Considering Optimized Power Factor Control," Sustainability, MDPI, vol. 15(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    2. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.
    3. Hassaine, L. & OLias, E. & Quintero, J. & Salas, V., 2014. "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 796-807.
    4. Samadi, Afshin & Shayesteh, Ebrahim & Eriksson, Robert & Rawn, Barry & Söder, Lennart, 2014. "Multi-objective coordinated droop-based voltage regulation in distribution grids with PV systems," Renewable Energy, Elsevier, vol. 71(C), pages 315-323.
    5. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
    6. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    7. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    8. Gucciardi Garcez, Catherine, 2017. "Distributed electricity generation in Brazil: An analysis of policy context, design and impact," Utilities Policy, Elsevier, vol. 49(C), pages 104-115.
    9. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    10. Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
    11. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    12. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    13. Marino Coppola & Pierluigi Guerriero & Adolfo Dannier & Santolo Daliento & Davide Lauria & Andrea Del Pizzo, 2020. "Control of a Fault-Tolerant Photovoltaic Energy Converter in Island Operation," Energies, MDPI, vol. 13(12), pages 1-18, June.
    14. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    15. Kurz, Konstantin & Bock, Carolin & Knodt, Michèle & Stöckl, Anna, 2022. "A Friend in Need Is a Friend Indeed? Analysis of the Willingness to Share Self-Produced Electricity During a Long-lasting Power Outage," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136773, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    17. Edoardo De Din & Fabian Bigalke & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-23, April.
    18. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    19. Eroğlu, Fatih & Kurtoğlu, Mehmet & Eren, Ahmet & Vural, Ahmet Mete, 2023. "Multi-objective control strategy for multilevel converter based battery D-STATCOM with power quality improvement," Applied Energy, Elsevier, vol. 341(C).
    20. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1364-1375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.