IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3538-d267538.html
   My bibliography  Save this article

Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps

Author

Listed:
  • Sergio Bobbo

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padova, Italy)

  • Laura Fedele

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padova, Italy)

  • Marco Curcio

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padova, Italy
    Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, I-35131 Padua, Italy)

  • Anna Bet

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padova, Italy)

  • Michele De Carli

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, I-35131 Padua, Italy)

  • Giuseppe Emmi

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, I-35131 Padua, Italy)

  • Fabio Poletto

    (Hi-Ref S.p.A., I-35020 Tribano, Italy)

  • Andrea Tarabotti

    (Hi-Ref S.p.A., I-35020 Tribano, Italy)

  • Dimitris Mendrinos

    (Geothermal Energy Department, Centre for Renewable Energy Sources and Saving, 19009 Pikermi, Greece)

  • Giulia Mezzasalma

    (RED Srl. Via le dell’Industria 58B, I-35127 Padova, Italy)

  • Adriana Bernardi

    (Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, I-35127 Padova, Italy)

Abstract

In the European Union (EU), buildings are responsible for about 40% of the total final energy consumption, and 36% of the European global CO 2 emissions. The European Commission released directives to push for the enhancement of the buildings energy performance and identified, beside the retrofit of the current building stock, Heating, Ventilation, and Air Conditioning (HVAC) systems as the other main way to increase renewable energy sharing and overall building energy efficiency. For this purpose, Ground Source Heat Pumps (GSHPs) represent one of the most interesting technologies to provide energy for heating, cooling, and domestic water production in residential applications, ensuring a significant reduction (e.g., up to 44% compared with air-source heat pumps) of energy consumption and the corresponding emissions. At present, GSHPs mainly employ the refrigerant R410A as the working fluid, which has a Global Warming Potential (GWP) of 2087. However, following the EU Regulation No. 517/2014 on fluorinated greenhouse gases, this high GWP refrigerant will have to be substituted for residential applications in the next years. Thus, to increase the sustainability of GSHPs, it is necessary to identify short time alternative fluids with lower GWP, before finding medium-long term solutions characterized by very low GWP. This is one of the tasks of the UE project "Most Easy, Efficient, and Low-Cost Geothermal Systems for Retrofitting Civil and Historical Buildings" (acronym GEO4CIVHIC). Here, a thorough thermodynamic analysis, based on both energy and exergy analysis, will be presented to perform a comparison between different fluids as substitutes for R410A, considered as the benchmark for GSHP applications. These fluids have been selected considering their lower flammability with respect to hydrocarbons (mainly R290), that is one of the main concerns for the companies. A parametric analysis has been performed, for a reversible GSHP cycle, at various heat source and sink conditions, with the aim to identify the fluid giving the best energetic performance and to evaluate the distribution of the irreversibilities along the cycle. Considering all these factors, R454B turned out to be the most suitable fluid to use in a ground source heat pump, working at given conditions. Special attention has been paid to the compression phase and the heat transfer in evaporator and condenser.

Suggested Citation

  • Sergio Bobbo & Laura Fedele & Marco Curcio & Anna Bet & Michele De Carli & Giuseppe Emmi & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2019. "Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps," Energies, MDPI, vol. 12(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3538-:d:267538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Luo & Joachim Rohn & Manfred Bayer & Anna Priess, 2013. "Thermal Efficiency Comparison of Borehole Heat Exchangers with Different Drillhole Diameters," Energies, MDPI, vol. 6(8), pages 1-20, August.
    2. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2018. "Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system," Energy, Elsevier, vol. 147(C), pages 81-93.
    3. Hu, Bin & Li, Yaoyu & Mu, Baojie & Wang, Shaojie & Seem, John E. & Cao, Feng, 2016. "Extremum seeking control for efficient operation of hybrid ground source heat pump system," Renewable Energy, Elsevier, vol. 86(C), pages 332-346.
    4. Nam, Yujin & Chae, Ho-Byung, 2014. "Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger," Energy, Elsevier, vol. 73(C), pages 933-942.
    5. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Makhnatch, Pavel & Molés, Francisco, 2017. "Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1031-1042.
    6. Li, Huai & Nagano, Katsunori & Lai, Yuanxiang & Shibata, Kazuo & Fujii, Hikari, 2013. "Evaluating the performance of a large borehole ground source heat pump for greenhouses in northern Japan," Energy, Elsevier, vol. 63(C), pages 387-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volodymyr Voloshchuk & Paride Gullo & Eugene Nikiforovich, 2023. "Advanced Exergy Analysis of Ultra-Low GWP Reversible Heat Pumps for Residential Applications," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
    3. Cristina Piselli & Jessica Romanelli & Matteo Di Grazia & Augusto Gavagni & Elisa Moretti & Andrea Nicolini & Franco Cotana & Francesco Strangis & Henk J. L. Witte & Anna Laura Pisello, 2020. "An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy," Energies, MDPI, vol. 13(10), pages 1-21, May.
    4. Laura Fedele & Sergio Bobbo & Davide Menegazzo & Michele De Carli & Laura Carnieletto & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2023. "Energetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A and R134a in Ground-Source Heat Pumps," Energies, MDPI, vol. 16(9), pages 1-18, April.
    5. Matthew Kuperus Heun & Zeke Marshall & Emmanuel Aramendia & Paul E. Brockway, 2020. "The Energy and Exergy of Light with Application to Societal Exergy Analysis," Energies, MDPI, vol. 13(20), pages 1-24, October.
    6. Tian-Tian Li & Yun-Ze Li & Zhuang-Zhuang Zhai & En-Hui Li & Tong Li, 2019. "Energy-Saving Strategies and their Energy Analysis and Exergy Analysis for In Situ Thermal Remediation System of Polluted-Soil," Energies, MDPI, vol. 12(20), pages 1-28, October.
    7. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huai & Xu, Wei & Yu, Zhen & Wu, Jianlin & Sun, Zhifeng, 2017. "Application analyze of a ground source heat pump system in a nearly zero energy building in China," Energy, Elsevier, vol. 125(C), pages 140-151.
    2. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    3. Liu, Xin & Zuo, Yuning & Yin, Zekai & Liang, Chuanzhi & Feng, Guohui & Yang, Xiaodan, 2023. "Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China," Energy, Elsevier, vol. 262(PA).
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    6. Seokjae Lee & Sangwoo Park & Taek Hee Han & Jongmuk Won & Hangseok Choi, 2023. "Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    7. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    8. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    9. Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    11. Lee, Seokjae & Park, Sangwoo & Won, Jongmuk & Choi, Hangseok, 2021. "Influential factors on thermal performance of energy slabs equipped with an insulation layer," Renewable Energy, Elsevier, vol. 174(C), pages 823-834.
    12. Li, HongQiang & Kang, ShuShuo & Yu, Zhun & Cai, Bo & Zhang, GuoQiang, 2014. "A feasible system integrating combined heating and power system with ground-source heat pump," Energy, Elsevier, vol. 74(C), pages 240-247.
    13. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    14. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Wu, Di & Hu, Bin & Wang, R.Z., 2018. "Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants," Renewable Energy, Elsevier, vol. 116(PA), pages 775-785.
    16. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    18. Sofyan, Sarwo Edhy & Hu, Eric & Kotousov, Andrei, 2016. "A new approach to modelling of a horizontal geo-heat exchanger with an internal source term," Applied Energy, Elsevier, vol. 164(C), pages 963-971.
    19. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    20. Piyanut Saengsikhiao & Juntakan Taweekun & Kittinan Maliwan & Somchai Sae-ung & Thanansak Theppaya, 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-19, March.

    More about this item

    Keywords

    ground source heat pumps; low GWP refrigerants; energy analysis; R410A; R32; R454B;
    All these keywords.

    JEL classification:

    • R32 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Other Spatial Production and Pricing Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3538-:d:267538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.