IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3757-d1134756.html
   My bibliography  Save this article

Energetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A and R134a in Ground-Source Heat Pumps

Author

Listed:
  • Laura Fedele

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padua, Italy)

  • Sergio Bobbo

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padua, Italy)

  • Davide Menegazzo

    (Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, I-35127 Padua, Italy
    Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, I-35131 Padua, Italy)

  • Michele De Carli

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, I-35131 Padua, Italy)

  • Laura Carnieletto

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, I-35131 Padua, Italy)

  • Fabio Poletto

    (Hi-Ref Spa, I-35020 Tribano, Italy)

  • Andrea Tarabotti

    (Hi-Ref Spa, I-35020 Tribano, Italy)

  • Dimitris Mendrinos

    (Geothermal Energy Department, Centre for Renewable Energy Sources and Saving, 19009 Pikermi, Greece)

  • Giulia Mezzasalma

    (RED srl, Via le dell’Industria 58B, I-35127 Padua, Italy)

  • Adriana Bernardi

    (Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, I-35127 Padua, Italy)

Abstract

The European building sector is responsible for approximately 40% of total energy consumption and for 36% of greenhouse gas emissions. Identifying technological solutions capable of reducing energy consumption and greenhouse gas emissions is one of the main objectives of the European Commission. Ground source heat pumps (GSHPs) are of particular interest for this purpose, promising a considerable reduction in greenhouse gas emissions of HVAC systems. This paper reports the results of the energetic analysis carried out within the EU research project GEO4CIVHIC about the performance of geothermal heat pumps working with low-GWP refrigerants as alternatives for R134a and R410A. The work has been carried out through computer simulations based on base and regenerative reverse cycles. Several heat sink and heat source temperature conditions have been considered in order to evaluate the GSHPs’ performance in the whole range of real conditions that can be found in Europe. Particular attention has been paid to the evaluation of compression isentropic efficiency and its influence on the overall cycle performance when dealing with steady-state heat pump simulations. To do so, five different scenarios of isentropic efficiency calculation have been studied and discussed.

Suggested Citation

  • Laura Fedele & Sergio Bobbo & Davide Menegazzo & Michele De Carli & Laura Carnieletto & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2023. "Energetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A and R134a in Ground-Source Heat Pumps," Energies, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3757-:d:1134756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
    2. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Sergio Bobbo & Laura Fedele & Marco Curcio & Anna Bet & Michele De Carli & Giuseppe Emmi & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2019. "Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps," Energies, MDPI, vol. 12(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    2. Moonis R. Ally & Brian Fricke, 2021. "Heat Transfer, Refrigeration and Heat Pumps," Energies, MDPI, vol. 14(23), pages 1-3, November.
    3. Cristina Piselli & Jessica Romanelli & Matteo Di Grazia & Augusto Gavagni & Elisa Moretti & Andrea Nicolini & Franco Cotana & Francesco Strangis & Henk J. L. Witte & Anna Laura Pisello, 2020. "An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy," Energies, MDPI, vol. 13(10), pages 1-21, May.
    4. Matthew Kuperus Heun & Zeke Marshall & Emmanuel Aramendia & Paul E. Brockway, 2020. "The Energy and Exergy of Light with Application to Societal Exergy Analysis," Energies, MDPI, vol. 13(20), pages 1-24, October.
    5. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
    6. Tian-Tian Li & Yun-Ze Li & Zhuang-Zhuang Zhai & En-Hui Li & Tong Li, 2019. "Energy-Saving Strategies and their Energy Analysis and Exergy Analysis for In Situ Thermal Remediation System of Polluted-Soil," Energies, MDPI, vol. 12(20), pages 1-28, October.
    7. Nan Yang & Weixiu Shi & Zihong Zhou, 2023. "Research on Application and International Policy of Renewable Energy in Buildings," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    8. Sihan Zhou & Lijie Zhu & Runan Wan & Tao Zhang & Yongzheng Zhang & Yi Zhan & Fang Wang & Linfeng Zhang & Tian You, 2023. "An Overview of Sandbox Experiment on Ground Heat Exchangers," Sustainability, MDPI, vol. 15(14), pages 1-39, July.
    9. Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
    10. Bo Shen & Moonis R. Ally, 2021. "Comparative Performance of Low Global Warming Potential (GWP) Refrigerants as Replacement for R-410A in a Regular 2-Speed Heat Pump for Sustainable Cooling," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    11. Carmen Mârza & Raluca Moldovan & Georgiana Corsiuc & Gelu Chisăliță, 2023. "Improving the Energy Performance of a Household Using Solar Energy: A Case Study," Energies, MDPI, vol. 16(18), pages 1-32, September.
    12. Tianchen Xue & Juha Jokisalo & Risto Kosonen, 2024. "Demand Response Potential of an Educational Building Heated by a Hybrid Ground Source Heat Pump System," Energies, MDPI, vol. 17(21), pages 1-30, October.
    13. Paul Christodoulides & Christakis Christou & Georgios A. Florides, 2024. "Ground Source Heat Pumps in Buildings Revisited and Prospects," Energies, MDPI, vol. 17(13), pages 1-36, July.
    14. Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2022. "Air-Side Nusselt Numbers and Friction Factor’s Individual Correlations of Finned Heat Exchangers," Energies, MDPI, vol. 15(15), pages 1-17, August.
    15. Hu, Zicheng & Li, Wanfeng & Zhang, Haiyan & Liu, Xiaoyuan & Geng, Shuwen & Han, Yuchen & Ge, Fenghua, 2024. "Soil thermal imbalance analysis of ground source heat pump system of residential and office buildings in sixteen cities," Renewable Energy, Elsevier, vol. 221(C).
    16. Volodymyr Voloshchuk & Paride Gullo & Eugene Nikiforovich, 2023. "Advanced Exergy Analysis of Ultra-Low GWP Reversible Heat Pumps for Residential Applications," Energies, MDPI, vol. 16(2), pages 1-17, January.
    17. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3757-:d:1134756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.