IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6047-d641055.html
   My bibliography  Save this article

An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor

Author

Listed:
  • Yujiao Zhao

    (Shandong Province Key Laboratory of Industrial Control Technology, College of Automation, Qingdao University, Qingdao 266071, China)

  • Haisheng Yu

    (Shandong Province Key Laboratory of Industrial Control Technology, College of Automation, Qingdao University, Qingdao 266071, China)

  • Shixian Wang

    (School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, Weihai 264209, China)

Abstract

This article presents an improved super-twisting high-order sliding mode observer for permanent magnet synchronous motors to achieve high-performance sensorless control. The proposed observer is able to simultaneously estimate rotor position and speed, as well as track parameter disturbances online. Then, according to the back-EMF model, the sensorless observer is further constructed to improve the estimation effect. The estimated rotor position and speed are used to replace the actual values detected by the sensor, and the estimated parameter disturbances are considered as feedback values to compensate the command voltage. In this way, not only is the estimation accuracy improved, but the robustness against uncertainties is also enhanced. Simulation and experimental results show that the proposed observer can effectively track the rotor position and speed and obtain good dynamic and steady-state performance.

Suggested Citation

  • Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6047-:d:641055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Shyan Wang & Tse-Ming Tsai, 2017. "Sliding Mode and Neural Network Control of Sensorless PMSM Controlled System for Power Consumption and Performance Improvement," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Anxing Liu & Haisheng Yu, 2020. "Smooth-Switching Control of Robot-Based Permanent-Magnet Synchronous Motors via Port-Controlled Hamiltonian and Feedback Linearization," Energies, MDPI, vol. 13(21), pages 1-16, November.
    3. Meng Shao & Yongting Deng & Hongwen Li & Jing Liu & Qiang Fei, 2019. "Sliding Mode Observer-Based Parameter Identification and Disturbance Compensation for Optimizing the Mode Predictive Control of PMSM," Energies, MDPI, vol. 12(10), pages 1-22, May.
    4. Mengting Ye & Tingna Shi & Huimin Wang & Xinmin Li & Changliang Xia, 2019. "Sensorless-MTPA Control of Permanent Magnet Synchronous Motor Based on an Adaptive Sliding Mode Observer," Energies, MDPI, vol. 12(19), pages 1-15, October.
    5. Danyang Bao & Huiming Wu & Ruiqi Wang & Fei Zhao & Xuewei Pan, 2020. "Full-Order Sliding Mode Observer Based on Synchronous Frequency Tracking Filter for High-Speed Interior PMSM Sensorless Drives," Energies, MDPI, vol. 13(24), pages 1-19, December.
    6. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    7. Peng Gao & Guangming Zhang & Xiaodong Lv, 2021. "Model-Free Control Using Improved Smoothing Extended State Observer and Super-Twisting Nonlinear Sliding Mode Control for PMSM Drives," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Mingcheng Lyu & Gongping Wu & Derong Luo & Fei Rong & Shoudao Huang, 2019. "Robust Nonlinear Predictive Current Control Techniques for PMSM," Energies, MDPI, vol. 12(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjie Yang & Xudong Liu, 2022. "A Novel Nonsingular Terminal Sliding Mode Observer-Based Sensorless Control for Electrical Drive System," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    2. Shuai Li & Ke Zhu & Liang Chen & Yao Yan & Qing Guo, 2022. "Variable Structure Disturbance Observer Based Dynamic Surface Control of Electrohydraulic Systems with Parametric Uncertainty," Energies, MDPI, vol. 15(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    2. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    3. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    4. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    5. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.
    6. Jongwon Choi, 2021. "Regression Model-Based Flux Observer for IPMSM Sensorless Control with Wide Speed Range," Energies, MDPI, vol. 14(19), pages 1-18, October.
    7. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    8. Jongwon Choi & Kwanghee Nam, 2018. "Wound Synchronous Machine Sensorless Control Based on Signal Injection into the Rotor Winding," Energies, MDPI, vol. 11(12), pages 1-20, November.
    9. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    10. Zhiming Liao & Yue Hao & Tao Guo & Bingxin Lv & Qiang Wang, 2022. "Second-Order Sliding Mode Control of Permanent Magnet Synchronous Motor Based on Singular Perturbation," Energies, MDPI, vol. 15(21), pages 1-13, October.
    11. Zheng Li & Zihao Zhang & Jinsong Wang & Shaohua Wang & Xuetong Chen & Hexu Sun, 2022. "ADRC Control System of PMLSM Based on Novel Non-Singular Terminal Sliding Mode Observer," Energies, MDPI, vol. 15(10), pages 1-18, May.
    12. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    13. Jiachun Lin & Yuteng Zhao & Pan Zhang & Junjie Wang & Hao Su, 2021. "Research on Compound Sliding Mode Control of a Permanent Magnet Synchronous Motor in Electromechanical Actuators," Energies, MDPI, vol. 14(21), pages 1-17, November.
    14. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    15. Xiaofei Zhang & Hongbin Ma, 2019. "Data-Driven Model-Free Adaptive Control Based on Error Minimized Regularized Online Sequential Extreme Learning Machine," Energies, MDPI, vol. 12(17), pages 1-17, August.
    16. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    17. Anton Dianov & Alecksey Anuchin, 2021. "Design of Constraints for Seeking Maximum Torque per Ampere Techniques in an Interior Permanent Magnet Synchronous Motor Control," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    18. Michał Gwóźdź & Łukasz Ciepliński, 2021. "An Algorithm for Calculation and Extraction of the Grid Voltage Component," Energies, MDPI, vol. 14(16), pages 1-12, August.
    19. Katarzyna Adamiak & Andrzej Bartoszewicz, 2022. "Novel Power-Rate Reaching Law for Quasi-Sliding Mode Control," Energies, MDPI, vol. 15(15), pages 1-14, July.
    20. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6047-:d:641055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.