IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p741-d208537.html
   My bibliography  Save this article

Low-Cost Position Sensorless Speed Control of PMSM Drive Using Four-Switch Inverter

Author

Listed:
  • Omer Cihan Kivanc

    (Department of Electrical and Electronics Engineering, Istanbul Okan University, 34959 Istanbul, Turkey
    These authors contributed equally to this work.)

  • Salih Baris Ozturk

    (Department of Electrical and Electronics Engineering, Istanbul Okan University, 34959 Istanbul, Turkey
    These authors contributed equally to this work.)

Abstract

A low-cost position sensorless speed control method for permanent magnet synchronous motors (PMSMs) is proposed using a space vector PWM based four-switch three-phase (FSTP) inverter. The stator feedforward d q -axes voltages are obtained for the position sensorless PMSM drive. The q -axis current controller output with a first order low-pass filter formulates the rotor speed estimation algorithm in a closed-loop fashion similar to PLL (Phase Lock Loop) and the output of the d -axis current controller acts as the derivative representation in the stator feedforward voltage equation. The proposed method is quite insensitive to multiple simultaneous parameter variations such as rotor flux linkage and stator resistance due to the dynamic effects of the PI current regulator outputs that are used in the stator feedforward voltages with a proper value of K gain in the q -axis stator voltage equation. The feasibility and effectiveness of the proposed position sensorless speed control scheme for the PMSM drive using an FSTP inverter are verified by simulation and experimental studies.

Suggested Citation

  • Omer Cihan Kivanc & Salih Baris Ozturk, 2019. "Low-Cost Position Sensorless Speed Control of PMSM Drive Using Four-Switch Inverter," Energies, MDPI, vol. 12(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:741-:d:208537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Shyan Wang & Tse-Ming Tsai, 2017. "Sliding Mode and Neural Network Control of Sensorless PMSM Controlled System for Power Consumption and Performance Improvement," Energies, MDPI, vol. 10(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Yang & Takahiro Kawaguchi & Seiji Hashimoto & Wei Jiang, 2020. "Switching Sequence Model Predictive Direct Torque Control of IPMSMs for EVs in Switch Open-Circuit Fault-Tolerant Mode," Energies, MDPI, vol. 13(21), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    2. Jongwon Choi & Kwanghee Nam, 2018. "Wound Synchronous Machine Sensorless Control Based on Signal Injection into the Rotor Winding," Energies, MDPI, vol. 11(12), pages 1-20, November.
    3. Shuo Chen & Xiao Zhang & Xiang Wu & Guojun Tan & Xianchao Chen, 2019. "Sensorless Control for IPMSM Based on Adaptive Super-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop," Energies, MDPI, vol. 12(7), pages 1-19, March.
    4. Xiaofei Zhang & Hongbin Ma, 2019. "Data-Driven Model-Free Adaptive Control Based on Error Minimized Regularized Online Sequential Extreme Learning Machine," Energies, MDPI, vol. 12(17), pages 1-17, August.
    5. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    6. Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
    7. Christian Aldrete-Maldonado & Ramon Ramirez-Villalobos & Luis N. Coria & Corina Plata-Ante, 2023. "Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    8. Chunlei Wang & Dongxing Cao, 2020. "New Sensorless Speed Control of a Hybrid Stepper Motor Based on Fuzzy Sliding Mode Observer," Energies, MDPI, vol. 13(18), pages 1-19, September.
    9. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    10. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    11. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:741-:d:208537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.