IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3088-d256625.html
   My bibliography  Save this article

Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling

Author

Listed:
  • Sui Peng

    (Grid Planning and Research Center, Guangdong Power Grid Corporation, CSG, Guangzhou 510080, China)

  • Huixiang Chen

    (Grid Planning and Research Center, Guangdong Power Grid Corporation, CSG, Guangzhou 510080, China)

  • Yong Lin

    (Grid Planning and Research Center, Guangdong Power Grid Corporation, CSG, Guangzhou 510080, China)

  • Tong Shu

    (Power and Energy Reliability Research Center, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Xingyu Lin

    (Power and Energy Reliability Research Center, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Junjie Tang

    (Power and Energy Reliability Research Center, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Wenyuan Li

    (Power and Energy Reliability Research Center, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Weijie Wu

    (Grid Planning and Research Center, Guangdong Power Grid Corporation, CSG, Guangzhou 510080, China)

Abstract

This paper proposes a new probabilistic power flow method for the hybrid AC/VSC-MTDC (Voltage Source Control-Multiple Terminal Direct Current) grids, which is based on the combination of ninth-order polynomial normal transformation (NPNT) and inherited Latin hypercube sampling (ILHS) techniques. NPNT is utilized to directly handle historical records of uncertain sources to build the accurate probability model of random inputs, and ILHS is adopted to propagate the randomness from inputs to target outputs. Regardless of whether the underlying probability distribution is known or unknown, the proposed method has the ability to adaptively evaluate the sample size according to a specific operational scenario of the power systems, thus achieving a good balance between computational accuracy and speed. Meanwhile, the frequency histograms, probability distributions, and some more statistics of the results can be accurately and efficiently estimated as well. The modified IEEE 118-bus system, together with the realistic data of wind speeds and diverse consumer behaviors following irregular distributions, is used to demonstrate the effectiveness and superiority of the proposed method.

Suggested Citation

  • Sui Peng & Huixiang Chen & Yong Lin & Tong Shu & Xingyu Lin & Junjie Tang & Wenyuan Li & Weijie Wu, 2019. "Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling," Energies, MDPI, vol. 12(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3088-:d:256625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ziwei Zhu & Shifan Lu & Sui Peng, 2018. "An Improved Stochastic Response Surface Method Based Probabilistic Load Flow for Studies on Correlated Wind Speeds in the AC/DC Grid," Energies, MDPI, vol. 11(12), pages 1-14, December.
    2. Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
    3. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    4. Tong, Charles, 2006. "Refinement strategies for stratified sampling methods," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1257-1265.
    5. Sallaberry, C.J. & Helton, J.C. & Hora, S.C., 2008. "Extension of Latin hypercube samples with correlated variables," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1047-1059.
    6. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2013. "Probabilistic load flow incorporating correlation between time-varying electricity demand and renewable power generation," Renewable Energy, Elsevier, vol. 55(C), pages 532-543.
    7. Headrick, Todd C., 2002. "Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 685-711, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Chen & Zhizhong Guo & Hongbo Li & Yi Yang & Abebe Tilahun Tadie & Guizhong Wang & Yingwei Hou, 2020. "Probabilistic Optimal Power Flow for Day-Ahead Dispatching of Power Systems with High-Proportion Renewable Power Sources," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    2. Antonio T. Alexandridis, 2020. "Modern Power System Dynamics, Stability and Control," Energies, MDPI, vol. 13(15), pages 1-8, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    2. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    3. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    4. Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
    5. Shields, Michael D. & Teferra, Kirubel & Hapij, Adam & Daddazio, Raymond P., 2015. "Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 310-325.
    6. Prusty, B. Rajanarayan & Jena, Debashisha, 2018. "An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling," Renewable Energy, Elsevier, vol. 116(PA), pages 367-383.
    7. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    10. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    11. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    12. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    13. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    14. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    15. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    16. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    17. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    18. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    20. Vikram V. Garg & Roy H. Stogner, 2017. "Hierarchical Latin Hypercube Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 673-682, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3088-:d:256625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.