IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p3013-d254849.html
   My bibliography  Save this article

Simultaneous Inertia Contribution and Optimal Grid Utilization with Wind Turbines

Author

Listed:
  • Clemens Jauch

    (Wind Energy Technology Institute, Flensburg University of Applied Sciences, 24943 Flensburg, Germany)

  • Arne Gloe

    (Wind Energy Technology Institute, Flensburg University of Applied Sciences, 24943 Flensburg, Germany)

Abstract

This paper presents findings of a study on continuous feed-in management and continuous synthetic inertia contribution with wind turbines. A realistic case study, based on real measurements, is outlined. A wind turbine feeds into a weak feeder, such that its power has to be adapted to the permissible loading of this feeder. At the same time the wind turbine is to provide inertia to the grid by applying the previously published variable inertia constant controller. It is discussed that optimal grid utilization and simultaneous inertia contribution are mandatory for the frequency control in power systems that are heavily penetrated with renewable energies. The study shows that continuous feed-in management can be combined well with continuous inertia provision. There are hardly any negative consequences for the wind turbine. The benefits for the grid are convincing, both in terms of increased system utilization and in terms of provided inertia. It is concluded that wind turbines can enhance angular stability in a power system to a larger extent than conventional power plants.

Suggested Citation

  • Clemens Jauch & Arne Gloe, 2019. "Simultaneous Inertia Contribution and Optimal Grid Utilization with Wind Turbines," Energies, MDPI, vol. 12(15), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3013-:d:254849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/3013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/3013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clemens Jauch & Arne Gloe & Sebastian Hippel & Henning Thiesen, 2017. "Increased Wind Energy Yield and Grid Utilisation with Continuous Feed-In Management," Energies, MDPI, vol. 10(7), pages 1-23, June.
    2. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    3. Hafiz, Faizal & Abdennour, Adel, 2016. "An adaptive neuro-fuzzy inertia controller for variable-speed wind turbines," Renewable Energy, Elsevier, vol. 92(C), pages 136-146.
    4. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arne Gloe & Clemens Jauch & Bogdan Craciun & Arvid Zanter & Jörg Winkelmann, 2021. "Influence of Continuous Provision of Synthetic Inertia on the Mechanical Loads of a Wind Turbine," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Alexander Rohr & Clemens Jauch, 2021. "Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator," Energies, MDPI, vol. 14(10), pages 1-20, May.
    3. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.
    4. Feng Guo & David Schlipf, 2021. "A Spectral Model of Grid Frequency for Assessing the Impact of Inertia Response on Wind Turbine Dynamics," Energies, MDPI, vol. 14(9), pages 1-19, April.
    5. Clemens Jauch, 2021. "Grid Services and Stress Reduction with a Flywheel in the Rotor of a Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-25, April.
    6. Antonio T. Alexandridis, 2020. "Modern Power System Dynamics, Stability and Control," Energies, MDPI, vol. 13(15), pages 1-8, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    2. Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).
    3. Alexander Rohr & Clemens Jauch, 2021. "Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator," Energies, MDPI, vol. 14(10), pages 1-20, May.
    4. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.
    5. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    6. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    7. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    8. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    9. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    10. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    12. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    14. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    15. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    16. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    18. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    19. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    20. Dan Zhang & Yuan Yang & Bingjie Shen & Tao Wang & Min Cheng, 2024. "Transient Stability Assessment in Power Systems: A Spatiotemporal Graph Convolutional Network Approach with Graph Simplification," Energies, MDPI, vol. 17(20), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3013-:d:254849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.