IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544219324727.html
   My bibliography  Save this article

Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain

Author

Listed:
  • Villamor, Lila Vázquez
  • Avagyan, Vitali
  • Chalmers, Hannah

Abstract

This paper assesses how operational flexibility and the curtailment of renewable energy are connected using a unit commitment and economic dispatch model that includes operational characteristics of conventional power plants and system constraints. A Great Britain test system is analysed under different scenarios of wind (onshore and offshore) and solar installed capacity, showing that an increase in curtailment is mostly expected as wind deployment increases. This curtailment reaches 17% of the annual available variable renewable electricity generation at high wind and solar installed capacities and is mainly driven by the inertial requirement. The best approach to reducing curtailment is, therefore, to reduce the inertia floor by relaxing Rate of Change of Frequency limits. For the assumed curtailment costs, onshore wind presents a stronger correlation with overall curtailment than offshore wind and solar, albeit influenced by the levels of solar installed capacity. Significant reductions in curtailment can be achieved if wind contributes to system balancing requirements. This emphasizes the importance of ensuring that variable renewables are technically able to contribute to system balancing, wherever feasible, and of improving access to revenue streams that incentivise flexible operation of variable renewable generation.

Suggested Citation

  • Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544219324727
    DOI: 10.1016/j.energy.2019.116777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    2. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    3. Gupta, Akshita & Kumar, Arun & Khatod, Dheeraj Kumar, 2019. "Optimized scheduling of hydropower with increase in solar and wind installations," Energy, Elsevier, vol. 183(C), pages 716-732.
    4. Cook, Tyson & Shaver, Lee & Arbaje, Paul, 2018. "Modeling constraints to distributed generation solar photovoltaic capacity installation in the US Midwest," Applied Energy, Elsevier, vol. 210(C), pages 1037-1050.
    5. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    6. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    7. Taibi, Emanuele & Fernández del Valle, Carlos & Howells, Mark, 2018. "Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study," Energy, Elsevier, vol. 164(C), pages 65-78.
    8. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    9. Mc Garrigle, E.V. & Deane, J.P. & Leahy, P.G., 2013. "How much wind energy will be curtailed on the 2020 Irish power system?," Renewable Energy, Elsevier, vol. 55(C), pages 544-553.
    10. Raugei, Marco & Leccisi, Enrica & Azzopardi, Brian & Jones, Christopher & Gilbert, Paul & Zhang, Lingxi & Zhou, Yutian & Mander, Sarah & Mancarella, Pierluigi, 2018. "A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment," Energy Policy, Elsevier, vol. 114(C), pages 51-62.
    11. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    12. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    13. Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
    14. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    15. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    16. Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
    17. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sousa, Jorge & Lagarto, João & Carvalho, Ezequiel & Martins, Ana, 2023. "SWHORD simulator: A platform to evaluate energy transition targets in future energy systems with increasing renewable generation, electric vehicles, storage technologies, and hydrogen systems," Energy, Elsevier, vol. 271(C).
    2. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    3. López Prol, Javier & Zilberman, David, 2023. "No alarms and no surprises: Dynamics of renewable energy curtailment in California," Energy Economics, Elsevier, vol. 126(C).
    4. Carla Cristiane Sokulski & Murillo Vetroni Barros & Rodrigo Salvador & Evandro Eduardo Broday & Antonio Carlos de Francisco, 2022. "Trends in Renewable Electricity Generation in the G20 Countries: An Analysis of the 1990–2020 Period," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    5. Marshman, Daniel & Brear, Michael & Ring, Brendan, 2022. "Impact of unit commitment and RoCoF constraints on revenue sufficiency in decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 106(C).
    6. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    7. Kena Likassa Nefabas & Mengesha Mamo & Lennart Söder, 2023. "Analysis of System Balancing and Wind Power Curtailment Challenges in the Ethiopian Power System under Different Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    8. Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
    9. Gong, Lili & Cao, Wu & Liu, Kangli & Yu, Yue & Zhao, Jianfeng, 2020. "Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources," Renewable Energy, Elsevier, vol. 156(C), pages 665-676.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    2. Guerra, K. & Welfle, A. & Gutiérrez-Alvarez, R. & Freer, M. & Ma, L. & Haro, P., 2024. "The role of energy storage in Great Britain's future power system: focus on hydrogen and biomass," Applied Energy, Elsevier, vol. 357(C).
    3. Drew, Daniel R. & Coker, Phil J. & Bloomfield, Hannah C. & Brayshaw, David J. & Barlow, Janet F. & Richards, Andrew, 2019. "Sunny windy sundays," Renewable Energy, Elsevier, vol. 138(C), pages 870-875.
    4. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    5. Guerra, K. & Gutiérrez-Alvarez, R. & Guerra, Omar J. & Haro, P., 2023. "Opportunities for low-carbon generation and storage technologies to decarbonise the future power system," Applied Energy, Elsevier, vol. 336(C).
    6. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    9. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    10. Sambasivam, Balasubramanian & Xu, Yuan, 2023. "Reducing solar PV curtailment through demand-side management and economic dispatch in Karnataka, India," Energy Policy, Elsevier, vol. 172(C).
    11. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    12. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    13. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Antti Alahäivälä & Juha Kiviluoma & Jyrki Leino & Matti Lehtonen, 2017. "System-Level Value of a Gas Engine Power Plant in Electricity and Reserve Production," Energies, MDPI, vol. 10(7), pages 1-13, July.
    15. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    16. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    17. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    18. Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
    19. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    20. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544219324727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.