IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p857-d81148.html
   My bibliography  Save this article

Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

Author

Listed:
  • Xinan Zhang

    (School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Yifeng Li

    (School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Maria Skyllas-Kazacos

    (School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Jie Bao

    (School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

Abstract

The penetration of solar photovoltaic (PV) systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS). With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB), which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

Suggested Citation

  • Xinan Zhang & Yifeng Li & Maria Skyllas-Kazacos & Jie Bao, 2016. "Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics," Energies, MDPI, vol. 9(10), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:857-:d:81148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Kerry B., 2014. "The reliability of distributed solar in critical peak demand: A capital value assessment," Renewable Energy, Elsevier, vol. 68(C), pages 103-110.
    2. Arun, P. & Banerjee, Rangan & Bandyopadhyay, Santanu, 2008. "Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach," Energy, Elsevier, vol. 33(7), pages 1155-1168.
    3. de la Hoz, Jordi & Martín, Helena & Miret, Jaume & Castilla, Miguel & Guzman, Ramon, 2016. "Evaluating the 2014 retroactive regulatory framework applied to the grid connected PV systems in Spain," Applied Energy, Elsevier, vol. 170(C), pages 329-344.
    4. Elhadidy, M.a & Shaahid, S.M, 1999. "Optimal sizing of battery storage for hybrid (wind+diesel) power systems," Renewable Energy, Elsevier, vol. 18(1), pages 77-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    2. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    3. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Linda Barelli & Gianni Bidini & Paolo Cherubini & Andrea Micangeli & Dario Pelosi & Carlo Tacconelli, 2019. "How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries," Energies, MDPI, vol. 12(16), pages 1-22, August.
    5. Julian Marius Müller & Raphael Kunderer, 2019. "Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    6. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Chin-Lung Hsieh & Po-Hong Tsai & Ning-Yih Hsu & Yong-Song Chen, 2019. "Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(2), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
    2. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2009. "Application of design space methodology for optimum sizing of wind-battery systems," Applied Energy, Elsevier, vol. 86(12), pages 2690-2703, December.
    3. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    5. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    6. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    7. Sergio Coronas & Jordi de la Hoz & Àlex Alonso & Helena Martín, 2022. "23 Years of Development of the Solar Power Generation Sector in Spain: A Comprehensive Review of the Period 1998–2020 from a Regulatory Perspective," Energies, MDPI, vol. 15(4), pages 1-53, February.
    8. Muñoz-Cerón, E. & Lomas, J.C. & Aguilera, J. & de la Casa, J., 2018. "Influence of Operation and Maintenance expenditures in the feasibility of photovoltaic projects: The case of a tracking pv plant in Spain," Energy Policy, Elsevier, vol. 121(C), pages 506-518.
    9. Nakata, Toshihiko & Kubo, Kazuo & Lamont, Alan, 2005. "Design for renewable energy systems with application to rural areas in Japan," Energy Policy, Elsevier, vol. 33(2), pages 209-219, January.
    10. John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
    11. Shaahid, S.M. & Elhadidy, M.A., 2003. "Opportunities for utilization of stand-alone hybrid (photovoltaic + diesel + battery) power systems in hot climates," Renewable Energy, Elsevier, vol. 28(11), pages 1741-1753.
    12. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    13. Park, Alex & Lappas, Petros, 2017. "Evaluating demand charge reduction for commercial-scale solar PV coupled with battery storage," Renewable Energy, Elsevier, vol. 108(C), pages 523-532.
    14. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    16. Liu, Li-qun & Wang, Zhi-xin & Zhang, Hua-qiang & Xue, Ying-cheng, 2010. "Solar energy development in China--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 301-311, January.
    17. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    18. Parihar, Amit Kumar Singh & Sethi, Virendra & Banerjee, Rangan, 2019. "Sizing of biomass based distributed hybrid power generation systems in India," Renewable Energy, Elsevier, vol. 134(C), pages 1400-1422.
    19. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    20. Amedeo Argentiero & Tarek Atalla & Simona Bigerna & Silvia Micheli & Paolo Polinori, 2017. "Comparing Renewable Energy Policies in E.U.15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, , vol. 38(1_suppl), pages 77-96, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:857-:d:81148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.