IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2354-d241226.html
   My bibliography  Save this article

Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels

Author

Listed:
  • Jagdesh Kumar

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

  • Aushiq Ali Memon

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

  • Lauri Kumpulainen

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

  • Kimmo Kauhaniemi

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

  • Omid Palizban

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

Abstract

The main objective of this study is to develop and analyse different harbour grid configurations that can facilitate the charging of batteries for modern vessels and supply onshore power. The use of battery energy storage systems in modern hybrid or entirely electric vessels is rapidly increasing globally in order to reduce emissions, save fuel and increase energy efficiency of ships. To fully utilise their benefits, certain technical issues need to be addressed. One of the most important aspects is to explore alternative ways of charging batteries with high power capacities for modern vessels. The paper presents a comprehensive overview of battery-charging configurations and discusses the technical challenges of each design from the perspective of their practical implementation, both onshore and onboard a vessel. It is found that the proposed models are suitable for vessels operating either entirely on battery storage or having it integrated into the onboard power system. Moreover, the proposed charging models in a harbour area can solve the problem of charging batteries for future hybrid and electric vessels and can open new business opportunities for ship owners and port administrators. The performance of the proposed models is validated by simulating two case studies in PSCAD: slow charging (based onshore) and fast charging (based onboard).

Suggested Citation

  • Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2354-:d:241226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    2. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.
    3. Coppola, T. & Fantauzzi, M. & Lauria, D. & Pisani, C. & Quaranta, F., 2016. "A sustainable electrical interface to mitigate emissions due to power supply in ports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 816-823.
    4. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    5. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
    6. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    7. Monaaf D. A. Al-Falahi & Tomasz Tarasiuk & Shantha Gamini Jayasinghe & Zheming Jin & Hossein Enshaei & Josep M. Guerrero, 2018. "AC Ship Microgrids: Control and Power Management Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.
    8. Flavio Balsamo & Davide Lauria & Fabio Mottola, 2019. "Design and Control of Coupled Inductor DC–DC Converters for MVDC Ship Power Systems," Energies, MDPI, vol. 12(4), pages 1-20, February.
    9. Lee, Kyoung-Jun & Shin, Dongsul & Yoo, Dong-Wook & Choi, Han-Kyu & Kim, Hee-Je, 2013. "Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode – Experimental investigation," Energy, Elsevier, vol. 49(C), pages 475-483.
    10. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jon Williamsson & Nicole Costa & Vendela Santén & Sara Rogerson, 2022. "Barriers and Drivers to the Implementation of Onshore Power Supply—A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    2. Andrea Vicenzutti & Giorgio Sulligoi, 2021. "Electrical and Energy Systems Integration for Maritime Environment-Friendly Transportation," Energies, MDPI, vol. 14(21), pages 1-24, November.
    3. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.
    4. Dariusz Karkosiński & Wojciech Aleksander Rosiński & Piotr Deinrych & Szymon Potrykus, 2021. "Onboard Energy Storage and Power Management Systems for All-Electric Cargo Vessel Concept," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    6. V. Sruthy & P. K. Preetha, 2024. "Implementation and operational feasibility of an offshore floating charging station for sustainable marine transportation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20931-20962, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    3. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Acanfora, Maria & Balsamo, Flavio & Fantauzzi, Maurizio & Lauria, Davide & Proto, Daniela, 2023. "Design of an electrical energy storage system for hybrid diesel electric ship propulsion aimed at load levelling in irregular wave conditions," Applied Energy, Elsevier, vol. 350(C).
    5. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    6. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    7. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    8. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    10. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    11. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    12. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    13. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    14. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    15. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
    18. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    19. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    20. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2354-:d:241226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.