IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2509-d244061.html
   My bibliography  Save this article

Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications

Author

Listed:
  • Serhii Stepenko

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    Department of Information Measuring Technologies, Metrology and Physics, Chernihiv National University of Technology, 14027 Chernihiv, Ukraine)

  • Oleksandr Husev

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    Biomedical Radioelectronic Apparatus and Systems Department, Chernihiv National University of Technology, 14027 Chernihiv, Ukraine)

  • Dmitri Vinnikov

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Carlos Roncero-Clemente

    (Department of Electrical, Electronic and Control Engineering, School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain)

  • Sergio Pires Pimentel

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    School of Electrical, Mechanical, and Computer Engineering, Federal University of Goias (UFG), Goiania 74690-900, Brazil)

  • Elena Santasheva

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    Department of Electrical, Electronic and Control Engineering, School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain)

Abstract

The paper presents a comparative study of two solar string inverters based on the Quasi-Z-Source (QZS) network. The first solution comprises a full-SiC two-level QZS inverter, while the second design was built based on a three-level neutral-point-clamped QZS inverter with Silicon based Metal–Oxide–Semiconductor Field-Effect Transistors (Si MOSFETs). Several criteria were taken into consideration: the size of passive elements, thermal design and size of heatsinks, voltage stress across semiconductors, and efficiency investigation. The Photovoltaic (PV)-string rated at 1.8 kW power was selected as a case study system. The advantages and drawbacks of both solutions are presented along with conclusions.

Suggested Citation

  • Serhii Stepenko & Oleksandr Husev & Dmitri Vinnikov & Carlos Roncero-Clemente & Sergio Pires Pimentel & Elena Santasheva, 2019. "Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications," Energies, MDPI, vol. 12(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2509-:d:244061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh-Khai Nguyen & Youn-Ok Choi, 2017. "Maximum Boost Control Method for Single-Phase Quasi-Switched-Boost and Quasi-Z-Source Inverters," Energies, MDPI, vol. 10(4), pages 1-14, April.
    2. Abdullah M. Noman & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh & Ayman A. Alabduljabbar & Abdulrahman I. Alolah, 2018. "Cascaded Multilevel Inverter Topology Based on Cascaded H-Bridge Multilevel Inverter," Energies, MDPI, vol. 11(4), pages 1-20, April.
    3. Xiaoqiang Guo & Jianhua Zhang & Jiale Zhou & Baocheng Wang, 2018. "A New Single-Phase Transformerless Current Source Inverter for Leakage Current Reduction," Energies, MDPI, vol. 11(7), pages 1-12, June.
    4. Shoudao Huang & Yang Zhang & Sijia Hu, 2016. "Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System," Energies, MDPI, vol. 9(10), pages 1-15, September.
    5. Manel Hammami & Gabriele Rizzoli & Riccardo Mandrioli & Gabriele Grandi, 2018. "Capacitors Voltage Switching Ripple in Three-Phase Three-Level Neutral Point Clamped Inverters with Self-Balancing Carrier-Based Modulation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    6. Efrén Fernández & Alejandro Paredes & Vicent Sala & Luis Romeral, 2018. "A Simple Method for Reducing THD and Improving the Efficiency in CSI Topology Based on SiC Power Devices," Energies, MDPI, vol. 11(10), pages 1-23, October.
    7. Ming Wu & Zhenhao Song & Zhipeng Lv & Kai Zhou & Qi Cui, 2019. "A Method for the Simultaneous Suppression of DC Capacitor Fluctuations and Common-Mode Voltage in a Five-Level NPC/H Bridge Inverter," Energies, MDPI, vol. 12(5), pages 1-14, February.
    8. Woo-Young Choi & Min-Kwon Yang, 2019. "High-Efficiency Design and Control of Zeta Inverter for Single-Phase Grid-Connected Applications," Energies, MDPI, vol. 12(6), pages 1-15, March.
    9. Neeraj Priyadarshi & Sanjeevikumar Padmanaban & Dan M. Ionel & Lucian Mihet-Popa & Farooque Azam, 2018. "Hybrid PV-Wind, Micro-Grid Development Using Quasi-Z-Source Inverter Modeling and Control—Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Yuan & Yongheng Yang & Frede Blaabjerg, 2020. "A Switched Quasi-Z-Source Inverter with Continuous Input Currents," Energies, MDPI, vol. 13(6), pages 1-12, March.
    2. Duc-Tri Do & Vinh-Thanh Tran & Minh-Khai Nguyen, 2021. "Enhanced Boost Factor for Three-Level Quasi-Switched Boost T-Type Inverter," Energies, MDPI, vol. 14(13), pages 1-17, June.
    3. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "Quasi-Z-Source Inverter-Based Photovoltaic Power System Modeling for Grid Stability Studies," Energies, MDPI, vol. 14(2), pages 1-16, January.
    4. Carlos D. Fuentes & Marcus Müller & Steffen Bernet & Samir Kouro, 2021. "SiC-MOSFET or Si-IGBT: Comparison of Design and Key Characteristics of a 690 V Grid-Tied Industrial Two-Level Voltage Source Converter," Energies, MDPI, vol. 14(11), pages 1-20, May.
    5. Yu Tang & Hao Sun & Shaoheng Wang, 2020. "A Family of High Step-Up Quasi Z-Source Inverters with Coupled Inductor," Energies, MDPI, vol. 13(21), pages 1-14, October.
    6. Vinh-Thanh Tran & Duc-Tri Do & Van-Dung Do & Minh-Khai Nguyen, 2020. "A Three-Level DC-Link Quasi-Switch Boost T-Type Inverter with Voltage Stress Reduction," Energies, MDPI, vol. 13(14), pages 1-20, July.
    7. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "State-Space Model of Quasi-Z-Source Inverter-PV Systems for Transient Dynamics Studies and Network Stability Assessment," Energies, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maosong Zhang & Ying Cui & Qunjing Wang & Jun Tao & Xiuqin Wang & Hongsheng Zhao & Guoli Li, 2019. "A Study on Neutral-Point Potential in Three-Level NPC Converters," Energies, MDPI, vol. 12(17), pages 1-22, September.
    2. Marek Michalczuk & Marcin Nikoniuk & Paweł Radziszewski, 2021. "Multi-Inverter Linear Motor Based Vehicle Propulsion System for a Small Cargo Transportation," Energies, MDPI, vol. 14(15), pages 1-16, July.
    3. Krzysztof Blecharz & Marcin Morawiec, 2019. "Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Antonio Ventosa-Cutillas & Pablo Montero-Robina & Francisco Umbría & Federico Cuesta & Francisco Gordillo, 2019. "Integrated Control and Modulation for Three-Level NPC Rectifiers," Energies, MDPI, vol. 12(9), pages 1-15, April.
    5. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    6. Rui Li & Fangyuan Shi & Xu Cai & Haibo Xu, 2019. "Influence of Parasitic Parameters on DC–DC Converters and Their Method of Suppression in High Frequency Link 35 kV PV Systems," Energies, MDPI, vol. 12(19), pages 1-24, September.
    7. Hongyang He & Zhigang Lu & Xiaoqiang Guo & Changli Shi & Dongqiang Jia & Chao Chen & Josep M. Guerrero, 2022. "Optimized Control Strategy for Photovoltaic Hydrogen Generation System with Particle Swarm Algorithm," Energies, MDPI, vol. 15(4), pages 1-17, February.
    8. Riccardo Mandrioli & Aleksandr Viatkin & Manel Hammami & Mattia Ricco & Gabriele Grandi, 2021. "Prediction of DC-Link Voltage Switching Ripple in Three-Phase Four-Leg PWM Inverters," Energies, MDPI, vol. 14(5), pages 1-26, March.
    9. Guozheng Zhang & Bingxu Wei & Xin Gu & Xinmin Li & Zhanqing Zhou & Wei Chen, 2019. "Sector Subdivision Based SVPWM Strategy of Neutral-Point-Clamped Three-Level Inverter for Current Ripple Reduction," Energies, MDPI, vol. 12(14), pages 1-16, July.
    10. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    11. Xizheng Guo & Jiaqi Yuan & Yiguo Tang & Xiaojie You, 2018. "Hardware in the Loop Real-time Simulation for the Associated Discrete Circuit Modeling Optimization Method of Power Converters," Energies, MDPI, vol. 11(11), pages 1-14, November.
    12. Fengjie Sun & Chenkai Zhao, 2019. "Research and Modeling of Photovoltaic Array Channel Noise Characteristics," Energies, MDPI, vol. 12(7), pages 1-20, April.
    13. Guo Chen & Chunyang Gong & Jun Bao & Lihua Zhu & Zhixin Wang, 2023. "Compensation-Voltage-Injection-Based Neutral-Point Voltage Fluctuation Suppression Method for NPC Converters," Energies, MDPI, vol. 16(11), pages 1-20, May.
    14. Daliang Yang & Li Yin & Shengguang Xu & Ning Wu, 2018. "Power and Voltage Control for Single-Phase Cascaded H-Bridge Multilevel Converters under Unbalanced Loads," Energies, MDPI, vol. 11(9), pages 1-18, September.
    15. Ivan Grgić & Dinko Vukadinović & Mateo Bašić & Matija Bubalo, 2021. "Efficiency Boost of a Quasi-Z-Source Inverter: A Novel Shoot-Through Injection Method with Dead-Time," Energies, MDPI, vol. 14(14), pages 1-24, July.
    16. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    17. Yufeng Tang & Zhiyong Li & Yougen Chen & Renyong Wei, 2019. "Ripple Vector Cancellation Modulation Strategy for Single-Phase Quasi-Z-Source Inverter," Energies, MDPI, vol. 12(17), pages 1-12, August.
    18. Po Li & Ruiyu Li & Haifeng Feng, 2018. "Total Harmonic Distortion Oriented Finite Control Set Model Predictive Control for Single-Phase Inverters," Energies, MDPI, vol. 11(12), pages 1-15, December.
    19. Abdullah M. Noman & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh, 2022. "Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications," Energies, MDPI, vol. 15(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2509-:d:244061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.