IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p508-d483114.html
   My bibliography  Save this article

Quasi-Z-Source Inverter-Based Photovoltaic Power System Modeling for Grid Stability Studies

Author

Listed:
  • Lluís Monjo

    (Department of System Engineering and Design, Universitat Jaume I, Av. Vicent sos Baynat s/n, 12071 Castelló de la Plana, Spain)

  • Luis Sainz

    (Department of Electrical Engineering (ETSEIB—UPC), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)

  • Juan José Mesas

    (Department of Electrical Engineering (EEBE—UPC), Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, 08019 Barcelona, Spain)

  • Joaquín Pedra

    (Department of Electrical Engineering (ETSEIB—UPC), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)

Abstract

Quasi-Z-source inverters (qZSIs) are becoming a powerful power conversion technology in photovoltaic (PV) power systems because they allow energy power conversion in a single stage operation. However, they can cause system resonances and reduce system damping, which may lead to instabilities. These stability problems are well known in grid-connected voltage source converter systems but not in quasi-Z-source inverter (qZSI)-based PV power systems. This paper contributes with Matlab/Simulink and PSCAD/EMTDC models of qZSI-based PV power systems to analyze transient interactions and stability problems. These models consider all power circuits and control blocks of qZSI-based PV power systems and can be used in sensitivity studies on the influence of system parameters on stability. PV power system stability is assessed from the proposed models. The causes of instabilities are analyzed from numerical simulations and possible solutions are proposed.

Suggested Citation

  • Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "Quasi-Z-Source Inverter-Based Photovoltaic Power System Modeling for Grid Stability Studies," Energies, MDPI, vol. 14(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:508-:d:483114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serhii Stepenko & Oleksandr Husev & Dmitri Vinnikov & Carlos Roncero-Clemente & Sergio Pires Pimentel & Elena Santasheva, 2019. "Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications," Energies, MDPI, vol. 12(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Santos & Marcus V. M. Rodrigues & Luis De Oro Arenas & Flávio A. S. Gonçalves, 2023. "A Comprehensive Small-Signal Model Formulation and Analysis for the Quasi-Y Impedance-Source Inverter," Energies, MDPI, vol. 16(13), pages 1-24, June.
    2. Matija Bubalo & Mateo Bašić & Dinko Vukadinović & Ivan Grgić, 2023. "Hybrid Wind-Solar Power System with a Battery-Assisted Quasi-Z-Source Inverter: Optimal Power Generation by Deploying Minimum Sensors," Energies, MDPI, vol. 16(3), pages 1-24, February.
    3. Abderahmane Abid & Abualkasim Bakeer & Laid Zellouma & Mansour Bouzidi & Abderezak Lashab & Boualaga Rabhi, 2023. "Low Computational Burden Predictive Direct Power Control of Quasi Z-Source Inverter for Grid-Tied PV Applications," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    4. Ivan Grgić & Dinko Vukadinović & Mateo Bašić & Matija Bubalo, 2022. "Photovoltaic System with a Battery-Assisted Quasi-Z-Source Inverter: Improved Control System Design Based on a Novel Small-Signal Model," Energies, MDPI, vol. 15(3), pages 1-29, January.
    5. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    6. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "State-Space Model of Quasi-Z-Source Inverter-PV Systems for Transient Dynamics Studies and Network Stability Assessment," Energies, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinh-Thanh Tran & Duc-Tri Do & Van-Dung Do & Minh-Khai Nguyen, 2020. "A Three-Level DC-Link Quasi-Switch Boost T-Type Inverter with Voltage Stress Reduction," Energies, MDPI, vol. 13(14), pages 1-20, July.
    2. Jing Yuan & Yongheng Yang & Frede Blaabjerg, 2020. "A Switched Quasi-Z-Source Inverter with Continuous Input Currents," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "State-Space Model of Quasi-Z-Source Inverter-PV Systems for Transient Dynamics Studies and Network Stability Assessment," Energies, MDPI, vol. 14(14), pages 1-15, July.
    4. Yu Tang & Hao Sun & Shaoheng Wang, 2020. "A Family of High Step-Up Quasi Z-Source Inverters with Coupled Inductor," Energies, MDPI, vol. 13(21), pages 1-14, October.
    5. Carlos D. Fuentes & Marcus Müller & Steffen Bernet & Samir Kouro, 2021. "SiC-MOSFET or Si-IGBT: Comparison of Design and Key Characteristics of a 690 V Grid-Tied Industrial Two-Level Voltage Source Converter," Energies, MDPI, vol. 14(11), pages 1-20, May.
    6. Duc-Tri Do & Vinh-Thanh Tran & Minh-Khai Nguyen, 2021. "Enhanced Boost Factor for Three-Level Quasi-Switched Boost T-Type Inverter," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:508-:d:483114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.