IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2235-d239038.html
   My bibliography  Save this article

Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter

Author

Listed:
  • Krzysztof Blecharz

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Marcin Morawiec

    (Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

Abstract

Nowadays, wind turbines based on a doubly fed induction generator (DFIG) are a commonly used solution in the wind industry. The standard converter topology used in these systems is the voltage source inverter (VSI). The use of reverse-blocking insulated gate bipolar transistor (RB-IGBT) in the current source inverter topology (CSI), which is an alternative topology, opens new possibilities of control methods. This paper presents a novel power control system for a DFIG supplied by a CSI. The authors propose to use multi-scalar DFIG state variables. A nonlinear control method realized by feedback linearization was used to control the active and reactive powers of the generator. In the feedback linearization controls, the nonlinear DFIG model was taken into account. In the control system structure, classical proportional–integral controllers were used. The control variables were the output current vector components of the CSI. Such approach was named the “current control”. The proposed control method is characterized by good dynamic properties which, combined with the inverter properties in the rotor circuit, allow to increase the quality of the energy transferred to the grid by the generator. In the simulation tests, the correctness of the decoupling of the active and reactive power control loops, the dynamics of controlled power changes, and the change of the machine operating range resulting from the increase of the rotational speed of the generator shaft were controlled. The simulation studies also evaluated the impact of changes in the value of the passive elements of the system on the operation of the generator system. Characteristic operating states of the generator system were analyzed using computer simulations.

Suggested Citation

  • Krzysztof Blecharz & Marcin Morawiec, 2019. "Nonlinear Control of a Doubly Fed Generator Supplied by a Current Source Inverter," Energies, MDPI, vol. 12(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2235-:d:239038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efrén Fernández & Alejandro Paredes & Vicent Sala & Luis Romeral, 2018. "A Simple Method for Reducing THD and Improving the Efficiency in CSI Topology Based on SiC Power Devices," Energies, MDPI, vol. 11(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Wachowiak, 2020. "Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer," Energies, MDPI, vol. 13(18), pages 1-24, September.
    2. Michał Michna & Filip Kutt & Łukasz Sienkiewicz & Roland Ryndzionek & Grzegorz Kostro & Dariusz Karkosiński & Bartłomiej Grochowski, 2020. "Mechanical-Level Hardware-In-The-Loop and Simulation in Validation Testing of Prototype Tower Crane Drives," Energies, MDPI, vol. 13(21), pages 1-25, November.
    3. Daniel Wachowiak, 2021. "A Universal Gains Selection Method for Speed Observers of Induction Machine," Energies, MDPI, vol. 14(20), pages 1-19, October.
    4. Paweł Kroplewski & Marcin Morawiec & Andrzej Jąderko & Charles Odeh, 2021. "Simulation Studies of Control Systems for Doubly Fed Induction Generator Supplied by the Current Source Converter," Energies, MDPI, vol. 14(5), pages 1-16, March.
    5. Wang Hu & Yunxiang Xie & Zhiping Wang & Zhi Zhang, 2020. "A Novel Three-Phase Current Source Rectifier Based on an Asymmetrical Structure to Reduce Stress on Semiconductor Devices," Energies, MDPI, vol. 13(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Li & Fangyuan Shi & Xu Cai & Haibo Xu, 2019. "Influence of Parasitic Parameters on DC–DC Converters and Their Method of Suppression in High Frequency Link 35 kV PV Systems," Energies, MDPI, vol. 12(19), pages 1-24, September.
    2. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    3. Serhii Stepenko & Oleksandr Husev & Dmitri Vinnikov & Carlos Roncero-Clemente & Sergio Pires Pimentel & Elena Santasheva, 2019. "Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications," Energies, MDPI, vol. 12(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2235-:d:239038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.