IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3165-d258502.html
   My bibliography  Save this article

Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics

Author

Listed:
  • Dumitrascu Gheorghe

    (“Gheorghe ASACHI” Technical University of Iaşi, Mechanical Engineering Faculty, Str. Prof. Dr. Doc. Dimitrie Mangeron, Nr. 43, Iasi 700050, Romania)

  • Feidt Michel

    (CNRS U.M.R 7573, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA), University of Lorraine, 2 Avenue de la Forêt de Haye, 54518 Vandoeuvre CEDEX, Nancy, France)

  • Popescu Aristotel

    (“Gheorghe ASACHI” Technical University of Iaşi, Mechanical Engineering Faculty, Str. Prof. Dr. Doc. Dimitrie Mangeron, Nr. 43, Iasi 700050, Romania)

  • Grigorean Stefan

    (“Gheorghe ASACHI” Technical University of Iaşi, Mechanical Engineering Faculty, Str. Prof. Dr. Doc. Dimitrie Mangeron, Nr. 43, Iasi 700050, Romania)

Abstract

This paper focuses on the finite physical dimensions thermodynamics (FPDT)-based design of combined endoreversible power and refrigeration cycles (CCHP). Four operating schemes were analyzed, one for the summer season and three for the winter season. These basic CCHP cycles should define the reference ones, having the maximum possible energy and exergy efficiencies considering real restrictive conditions. The FPDT design is an entropic approach because it defines and uses the dependences between the reference entropy and the control operational parameters characterizing the external energy interactions of CCHP subsystems. The FPDT introduces a generalization of CCHP systems design, due to the particular influences of entropy variations of the working fluids substituted with influences of four operational finite dimensions control parameters, i.e., two mean log temperature differences between the working fluids and external heat sources and two dimensionless thermal conductance inventories. Two useful energy interactions, power and cooling rate, were used as operational restrictive conditions. It was assumed that there are consumers required for the supplied heating rates depending on the energy operating scheme. The FPDT modeling evaluates main thermodynamic and heat transfer performances. The FPDT model presented in this paper is a general one, applicable to all endoreversible trigeneration cycles.

Suggested Citation

  • Dumitrascu Gheorghe & Feidt Michel & Popescu Aristotel & Grigorean Stefan, 2019. "Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics," Energies, MDPI, vol. 12(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3165-:d:258502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    2. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.
    3. Evangelos Bellos & Christos Tzivanidis, 2017. "Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors," Energies, MDPI, vol. 10(7), pages 1-31, June.
    4. Antonio Piacentino & Roberto Gallea & Pietro Catrini & Fabio Cardona & Domenico Panno, 2016. "On the Reliability of Optimization Results for Trigeneration Systems in Buildings, in the Presence of Price Uncertainties and Erroneous Load Estimation," Energies, MDPI, vol. 9(12), pages 1-31, December.
    5. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    6. Eun-Chul Kang & Euy-Joon Lee & Mohamed Ghorab & Libing Yang & Evgueniy Entchev & Kwang-Seob Lee & Nam-Jin Lyu, 2016. "Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application," Energies, MDPI, vol. 9(9), pages 1-17, September.
    7. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2019. "A Process Integration Method for Total Site Cooling, Heating and Power Optimisation with Trigeneration Systems," Energies, MDPI, vol. 12(6), pages 1-34, March.
    8. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    9. Khaliq, Abdul & Dincer, Ibrahim, 2011. "Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling," Energy, Elsevier, vol. 36(5), pages 2662-2670.
    10. Andrea Colantoni & Mauro Villarini & Vera Marcantonio & Francesco Gallucci & Massimo Cecchini, 2019. "Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace," Energies, MDPI, vol. 12(12), pages 1-12, June.
    11. Radwa Salem & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Comparison and Evaluation of the Potential Energy, Carbon Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings," Energies, MDPI, vol. 11(5), pages 1-15, May.
    12. Badami, Marco & Gerboni, Raffaella & Portoraro, Armando, 2017. "Determination and assessment of indices for the energy performance of district heating with cogeneration plants," Energy, Elsevier, vol. 127(C), pages 697-703.
    13. Kanoglu, Mehmet & Dincer, Ibrahim & Rosen, Marc A., 2007. "Understanding energy and exergy efficiencies for improved energy management in power plants," Energy Policy, Elsevier, vol. 35(7), pages 3967-3978, July.
    14. Gowtham Mohan & Sujata Dahal & Uday Kumar & Andrew Martin & Hamid Kayal, 2014. "Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis," Energies, MDPI, vol. 7(10), pages 1-24, October.
    15. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    16. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    17. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    18. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.
    19. Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2016. "Analysis of a Hybrid Solar-Assisted Trigeneration System," Energies, MDPI, vol. 9(9), pages 1-23, September.
    20. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2017. "Optimal operation and marginal costs in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 135(C), pages 788-798.
    21. Ratha Z. Mathkor & Brian Agnew & Mohammed A. Al-Weshahi & Fathi Latrsh, 2015. "Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle," Energies, MDPI, vol. 8(8), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gheorghe Dumitrașcu & Michel Feidt & Ştefan Grigorean, 2021. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Raphael Paul & Karl Heinz Hoffmann, 2021. "A Class of Reduced-Order Regenerator Models," Energies, MDPI, vol. 14(21), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    2. Barbara Mendecka & Lidia Lombardi & Paweł Gładysz & Wojciech Stanek, 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy," Energies, MDPI, vol. 11(4), pages 1-20, March.
    3. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    4. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    5. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    6. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    7. Yaokui Gao & Yong Hu & Deliang Zeng & Jizhen Liu & Feng Chen, 2018. "Modeling and Control of a Combined Heat and Power Unit with Two-Stage Bypass," Energies, MDPI, vol. 11(6), pages 1-20, May.
    8. Aydin, Hakan, 2013. "Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle," Energy, Elsevier, vol. 57(C), pages 766-774.
    9. Sergio Rech, 2019. "Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations," Energies, MDPI, vol. 12(7), pages 1-36, April.
    10. Víctor Echarri-Iribarren & Carlos Rizo-Maestre & Fernando Echarri-Iribarren, 2018. "Healthy Climate and Energy Savings: Using Thermal Ceramic Panels and Solar Thermal Panels in Mediterranean Housing Blocks," Energies, MDPI, vol. 11(10), pages 1-32, October.
    11. Han, Xiaoqu & Liu, Ming & Wu, Kaili & Chen, Weixiong & Xiao, Feng & Yan, Junjie, 2016. "Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system," Energy, Elsevier, vol. 106(C), pages 285-300.
    12. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.
    13. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    14. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    15. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    16. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    17. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    18. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    19. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    20. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3165-:d:258502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.