IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2220-d238853.html
   My bibliography  Save this article

Study on A Simple Model to Forecast the Electricity Demand under China’s New Normal Situation

Author

Listed:
  • Jinchai Lin

    (Economics and Management School, Wuhan University, Wuhan 430072, China)

  • Kaiwei Zhu

    (Institutes of Science and Development, Chinese Academy of Sciences, Bejing 100190, China
    School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100190, China
    Low-carbon Energy Research Center, Chongqing University of Technology, Chongqing 400054, China)

  • Zhen Liu

    (Low-carbon Energy Research Center, Chongqing University of Technology, Chongqing 400054, China)

  • Jenny Lieu

    (ETH Zurich, Transdisciplinarity Lab (USYS TdLab), Universitätstrasse 16, 8092 Zürich, Switzerland)

  • Xianchun Tan

    (Institutes of Science and Development, Chinese Academy of Sciences, Bejing 100190, China
    School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100190, China)

Abstract

A simple model was built to predict the national and regional electricity demand by sectors under China’s new normal situation. In the model, the data dimensionality reduction method and the Grey model (GM(1,1)) were combined and adopted to disaggregate the national economic growth rate into regional levels and forecast each region’s contribution rate to the national economic growth and regional industrial structure. Then, a bottom–up accounting model that considered the impacts of regional industrial structure transformation, regional energy efficiency, and regional household electric consumption was built to predict national and regional electric demand. Based on the predicted values, this paper analyzed the spatial changes in electric demand, and our results indicate the following. Firstly, the proposed model has high accuracy in national electricity demand prediction: the relative error in 2017 and 2018 was 2.90% and 2.60%, respectively. Secondly, China’s electric demand will not peak before 2025, and it is estimated to be between 7772.16 and 8458.85 billion kW·h in 2025, which is an increase of 31.28–42.88% compared with the total electricity consumption in 2016. The proportion of electricity demand in the mid-west regions will increase, while the eastern region will continue to be the country’s load center. Thirdly, under China’s new normal, households and the tertiary industry will be the main driving forces behind the increases in electric demand. Lastly, the drop in China’s economy under the new normal will lead to a decline in the total electricity demand, but it will not evidently change the electricity consumption share of the primary industry, secondary industry, tertiary industry, and household sector.

Suggested Citation

  • Jinchai Lin & Kaiwei Zhu & Zhen Liu & Jenny Lieu & Xianchun Tan, 2019. "Study on A Simple Model to Forecast the Electricity Demand under China’s New Normal Situation," Energies, MDPI, vol. 12(11), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2220-:d:238853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez-García, Julián & Moral-Carcedo, Julián, 2016. "Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain," Energy, Elsevier, vol. 97(C), pages 127-143.
    2. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    3. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    4. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    5. Li, Bin & Li, Tuo & Yu, Man & Chen, Bin, 2017. "Can equalization of public services narrow the regional disparities in China? A spatial econometrics approach," China Economic Review, Elsevier, vol. 44(C), pages 67-78.
    6. He, Yongxiu & Jiao, Jie & Chen, Qian & Ge, Sifan & Chang, Yan & Xu, Yang, 2017. "Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin," Energy, Elsevier, vol. 133(C), pages 9-22.
    7. Sun, Shaolong & Qiao, Han & Wei, Yunjie & Wang, Shouyang, 2017. "A new dynamic integrated approach for wind speed forecasting," Applied Energy, Elsevier, vol. 197(C), pages 151-162.
    8. Cheng, Y.S. & Wong, W.K. & Woo, C.K., 2013. "How much have electricity shortages hampered China's GDP growth?," Energy Policy, Elsevier, vol. 55(C), pages 369-373.
    9. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    10. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    11. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    12. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    13. Song, Zongyun & Niu, Dongxiao & Dai, Shuyu & Xiao, Xinli & Wang, Yuwei, 2017. "Incorporating the influence of China's industrial capacity elimination policies in electricity demand forecasting," Utilities Policy, Elsevier, vol. 47(C), pages 1-11.
    14. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    15. Mu, Tao & Xia, Qing & Kang, Chongqing, 2010. "Input-output table of electricity demand and its application," Energy, Elsevier, vol. 35(1), pages 326-331.
    16. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    17. He, Y.X. & Yang, L.F. & He, H.Y. & Luo, T. & Wang, Y.J., 2011. "Electricity demand price elasticity in China based on computable general equilibrium model analysis," Energy, Elsevier, vol. 36(2), pages 1115-1123.
    18. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    19. Verdejo, Humberto & Awerkin, Almendra & Becker, Cristhian & Olguin, Gabriel, 2017. "Statistic linear parametric techniques for residential electric energy demand forecasting. A review and an implementation to Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 512-521.
    20. Li, Yuke & Wu, Tianhao & Marshall, Nicholas & Steinerberger, Stefan, 2017. "Extracting geography from trade data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 205-212.
    21. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    2. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    3. Chengyu Zeng & Yuechun Jiang & Yuqing Liu & Zuoyun Tan & Zhongnan He & Shuhong Wu, 2019. "Optimal Dispatch of Integrated Energy System Considering Energy Hub Technology and Multi-Agent Interest Balance," Energies, MDPI, vol. 12(16), pages 1-17, August.
    4. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jiang & Xu Liu, & Gang He,, 2020. "Regional electricity demand and economic transition in China," Utilities Policy, Elsevier, vol. 64(C).
    2. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    3. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    4. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
    5. Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
    6. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    7. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    8. Xie, Pinjie & Li, Han & Sun, Feihu & Tian, Huizhen, 2021. "Analysis of the dependence of economic growth on electric power input and its influencing factors in China," Energy Policy, Elsevier, vol. 158(C).
    9. García-Gusano, Diego & Suárez-Botero, Jasson & Dufour, Javier, 2018. "Long-term modelling and assessment of the energy-economy decoupling in Spain," Energy, Elsevier, vol. 151(C), pages 455-466.
    10. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    11. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    12. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    13. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Abbasi, Kashif Raza & Abbas, Jaffar & Tufail, Muhammad, 2021. "Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan," Energy Policy, Elsevier, vol. 149(C).
    15. Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
    16. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    17. Yi-Tui Chen, 2017. "The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    18. Hussain, Arif & Perwez, Usama & Ullah, Kafait & Kim, Chul-Hwan & Asghar, Nosheen, 2021. "Long-term scenario pathways to assess the potential of best available technologies and cost reduction of avoided carbon emissions in an existing 100% renewable regional power system: A case study of G," Energy, Elsevier, vol. 221(C).
    19. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    20. Jinning Wang & Fangxing Li & Hantao Cui & Qingxin Shi & Trey Mingee, 2022. "Electricity consumption variation versus economic structure during COVID-19 on metropolitan statistical areas in the US," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2220-:d:238853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.