IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v473y2017icp205-212.html
   My bibliography  Save this article

Extracting geography from trade data

Author

Listed:
  • Li, Yuke
  • Wu, Tianhao
  • Marshall, Nicholas
  • Steinerberger, Stefan

Abstract

Understanding international trade is a fundamental problem in economics—one standard approach is via what is commonly called the “gravity equation”, which predicts the total amount of trade Fij between two countries i and j as Fij=GMiMjDij,where G is a constant, Mi,Mj denote the “economic mass” (often simply the gross domestic product) and Dij is the “distance” between countries i and j. Here “distance” is a complex notion that includes geographical, historical, linguistic and sociological components. We take the inverse route and ask ourselves to what extent it is possible to reconstruct meaningful information about countries simply from knowing the bilateral trade volumes Fij: indeed, we show that a remarkable amount of geopolitical information can be extracted. The main ingredient is a spectral decomposition of the Graph Laplacian as a tool to perform nonlinear dimensionality reduction.

Suggested Citation

  • Li, Yuke & Wu, Tianhao & Marshall, Nicholas & Steinerberger, Stefan, 2017. "Extracting geography from trade data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 205-212.
  • Handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:205-212
    DOI: 10.1016/j.physa.2017.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117300377
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melitz, Jacques & Toubal, Farid, 2014. "Native language, spoken language, translation and trade," Journal of International Economics, Elsevier, vol. 93(2), pages 351-363.
    2. Agata Fronczak & Piotr Fronczak, 2011. "Statistical mechanics of the international trade network," Papers 1104.2606, arXiv.org, revised May 2012.
    3. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    4. Felbermayr, Gabriel J. & Toubal, Farid, 2010. "Cultural proximity and trade," European Economic Review, Elsevier, vol. 54(2), pages 279-293, February.
    5. Jiankui He & Michael W. Deem, 2010. "Structure and Response in the World Trade Network," Papers 1010.0410, arXiv.org.
    6. K. Bhattacharya & G. Mukherjee & J. Saramaki & K. Kaski & S. S. Manna, 2007. "The International Trade Network: weighted network analysis and modelling," Papers 0707.4343, arXiv.org, revised Mar 2008.
    7. McCallum, John, 1995. "National Borders Matter: Canada-U.S. Regional Trade Patterns," American Economic Review, American Economic Association, vol. 85(3), pages 615-623, June.
    8. I. Tzekina & K. Danthi & D. Rockmore, 2008. "Evolution of community structure in the world trade web," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(4), pages 541-545, June.
    9. Jeffrey Frankel & Andrew Rose, 2002. "An Estimate of the Effect of Common Currencies on Trade and Income," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(2), pages 437-466.
    10. Mariusz Karpiarz & Piotr Fronczak & Agata Fronczak, 2014. "International trade network: fractal properties and globalization puzzle," Papers 1409.5963, arXiv.org.
    11. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    12. Li, Xiang & Chen, Guanrong, 2003. "A local-world evolving network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 274-286.
    13. Garlaschelli, Diego & Loffredo, Maria I., 2005. "Structure and evolution of the world trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 138-144.
    14. Zhen Zhu & Federica Cerina & Alessandro Chessa & Guido Caldarelli & Massimo Riccaboni, 2014. "The rise of China in the international trade network: a community core detection approach," Working Papers 4/2014, IMT School for Advanced Studies Lucca, revised Apr 2014.
    15. D. Garlaschelli & M. I. Loffredo, 2005. "Structure and Evolution of the World Trade Network," Papers physics/0502066, arXiv.org, revised May 2005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Marchionne & Evelina Lazareva, 2019. "The limits to integration before and after the great financial crisis," Economics Bulletin, AccessEcon, vol. 39(2), pages 838-844.
    2. Jinchai Lin & Kaiwei Zhu & Zhen Liu & Jenny Lieu & Xianchun Tan, 2019. "Study on A Simple Model to Forecast the Electricity Demand under China’s New Normal Situation," Energies, MDPI, vol. 12(11), pages 1-28, June.
    3. Perkiss, Stephanie & Moerman, Lee, 2020. "Hurricane Katrina: Exploring justice and fairness as a sociology of common good(s)," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuke Li & Tianhao Wu & Nicholas Marshall & Stefan Steinerberger, 2016. "Extracting Geography from Trade Data," Papers 1607.05235, arXiv.org, revised Jul 2016.
    2. Julian Maluck & Reik V Donner, 2015. "A Network of Networks Perspective on Global Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    3. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Community structure in the World Trade Network based on communicability distances," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 405-441, April.
    4. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    5. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    6. Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    7. Qing Guan & Haizhong An & Xiaoqing Hao & Xiaoliang Jia, 2016. "The Impact of Countries’ Roles on the International Photovoltaic Trade Pattern: The Complex Networks Analysis," Sustainability, MDPI, vol. 8(4), pages 1-16, March.
    8. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    9. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    10. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Xu, Helian & Cheng, Long, 2019. "The study of the influence of common humanistic relations on international services trade-from the perspective of multi-networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 642-651.
    12. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Fan, Ying & Ren, Suting & Cai, Hongbo & Cui, Xuefeng, 2014. "The state's role and position in international trade: A complex network perspective," Economic Modelling, Elsevier, vol. 39(C), pages 71-81.
    14. Hoppe, K. & Rodgers, G.J., 2015. "A microscopic study of the fitness-dependent topology of the world trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 64-74.
    15. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    16. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Driving force and resistance: Network feature in oil trade," Applied Energy, Elsevier, vol. 208(C), pages 361-375.
    17. Rita María del Río-Chanona & Jelena Grujić & Henrik Jeldtoft Jensen, 2017. "Trends of the World Input and Output Network of Global Trade," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-14, January.
    18. Gautier M Krings & Jean-François Carpantier & Jean-Charles Delvenne, 2014. "Trade Integration and Trade Imbalances in the European Union: A Network Perspective," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    19. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    20. Yuichi Ikeda & Hiroshi Iyetomi, 2018. "Trade network reconstruction and simulation with changes in trade policy," Evolutionary and Institutional Economics Review, Springer, vol. 15(2), pages 495-513, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:205-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.