IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v90y2018icp992-1016.html
   My bibliography  Save this article

The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage

Author

Listed:
  • Arenas, Luis F.
  • Loh, Adeline
  • Trudgeon, David P.
  • Li, Xiaohong
  • Ponce de León, Carlos
  • Walsh, Frank C.

Abstract

Zinc negative electrodes are well known in primary batteries based on the classical Leclanché cell but a more recent development is the introduction of a number of rechargeable redox flow batteries for pilot and commercial scale using a zinc/zinc ion redox couple, in acid or alkaline electrolytes, or transformation of surface zinc oxides as a reversible electrode. The benefits and limitations of zinc negative electrodes are outlined with examples to discuss their thermodynamic and kinetic characteristics along with their practical aspects. Four main types of redox flow batteries employing zinc electrodes are considered: zinc-bromine, zinc-cerium, zinc-air and zinc-nickel. Problems associated with zinc deposition and dissolution, especially in acid media, are summarized. The main features of each battery are identified and the benefits of a flowing electrolyte are explained. In each case, a summary of their development, the electrode and cell reactions, their potentials, the performance of the positive and negative electrodes, the advantages of a single flow compartment and cell developments for energy storage are included. Remaining challenges are highlighted and possibilities for future advances in redox flow batteries are suggested.

Suggested Citation

  • Arenas, Luis F. & Loh, Adeline & Trudgeon, David P. & Li, Xiaohong & Ponce de León, Carlos & Walsh, Frank C., 2018. "The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 992-1016.
  • Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:992-1016
    DOI: 10.1016/j.rser.2018.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    2. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    3. Spanos, Constantine & Turney, Damon E. & Fthenakis, Vasilis, 2015. "Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 478-494.
    4. Xiong, Fengjiao & Zhou, Debi & Xie, Zhipeng & Chen, Yunyang, 2012. "A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application," Applied Energy, Elsevier, vol. 99(C), pages 291-296.
    5. Alotto, Piergiorgio & Guarnieri, Massimo & Moro, Federico, 2014. "Redox flow batteries for the storage of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 325-335.
    6. Pei, Pucheng & Wang, Keliang & Ma, Ze, 2014. "Technologies for extending zinc–air battery’s cyclelife: A review," Applied Energy, Elsevier, vol. 128(C), pages 315-324.
    7. Shouguang Yao & Peng Liao & Min Xiao & Jie Cheng & Wenwen Cai, 2017. "Study on Electrode Potential of Zinc Nickel Single-Flow Battery during Charge," Energies, MDPI, vol. 10(8), pages 1-11, July.
    8. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    9. Massimo Marino & Lorenza Misuri & Andrea Carati & Doriano Brogioli, 2014. "Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference," Energies, MDPI, vol. 7(6), pages 1-20, June.
    10. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    11. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    12. Bolund, Björn & Bernhoff, Hans & Leijon, Mats, 2007. "Flywheel energy and power storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 235-258, February.
    13. Hongyun Ma & Baoguo Wang & Yongsheng Fan & Weichen Hong, 2014. "Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack," Energies, MDPI, vol. 7(10), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatoly Antipov & Roman Pichugov & Lilia Abunaeva & Shengfu Tong & Mikhail Petrov & Alla Pustovalova & Ivan Speshilov & Natalia Kartashova & Pavel Loktionov & Alexander Modestov & Artem Glazkov, 2022. "Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies," Energies, MDPI, vol. 15(19), pages 1-20, October.
    2. Thangavel Sangeetha & Po-Tuan Chen & Wu-Fu Cheng & Wei-Mon Yan & K. David Huang, 2019. "Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cells," Energies, MDPI, vol. 12(6), pages 1-13, March.
    3. Xu, Zhicheng & Fan, Qi & Li, Yang & Wang, Jun & Lund, Peter D., 2020. "Review of zinc dendrite formation in zinc bromine redox flow battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    4. Igor Iwakiri & Tiago Antunes & Helena Almeida & João P. Sousa & Rita Bacelar Figueira & Adélio Mendes, 2021. "Redox Flow Batteries: Materials, Design and Prospects," Energies, MDPI, vol. 14(18), pages 1-45, September.
    5. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    3. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    4. Riaz Uddin & Hashim Raza Khan & Asad Arfeen & Muhammad Ayaz Shirazi & Athar Rashid & Umar Shahbaz Khan, 2021. "Energy Storage for Energy Security and Reliability through Renewable Energy Technologies: A New Paradigm for Energy Policies in Turkey and Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    5. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.
    6. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    7. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    9. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    10. Wang, Keliang & Pei, Pucheng & Wang, Yichun & Liao, Cheng & Wang, Wei & Huang, Shangwei, 2018. "Advanced rechargeable zinc-air battery with parameter optimization," Applied Energy, Elsevier, vol. 225(C), pages 848-856.
    11. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences," Energy, Elsevier, vol. 168(C), pages 450-461.
    12. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.
    13. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    14. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    15. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    16. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    17. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    18. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    19. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:992-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.